+0  
 
+1
120
2
avatar+220 

Simplify the expression . Show your work.

 Oct 1, 2018
 #1
avatar+1336 
+4

Answer:

 Oct 1, 2018
 #2
avatar+97586 
+2

Thanks gamesmaster

\(\sqrt{x^2}=|x| \qquad not\;\;x\)

 

If this expression is real then y must be positive.   

Also if an expression is simple then the denominator should be rational. (no Square root on the bottom)

Although your teacher may not care about this.\(\)

 

\(\sqrt\frac{4x^2}{3y}\\=\frac{|2x|}{\sqrt{3y}}\\ =\frac{|2x|}{\sqrt{3y}}\times \frac{\sqrt{3y}}{\sqrt{3y}}\\ =\frac{|2x|\sqrt{3y}}{3y} \\ =\left| \frac{2x\sqrt{3y}}{3y} \right|\\~\\ = \frac{2x\sqrt{3y}}{3y} \text{ when }x\ge0\\ = \frac{-2x\sqrt{3y}}{3y} \text{ when }x<0\)

.
 Oct 2, 2018

24 Online Users

avatar
avatar
avatar
avatar
avatar

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.