+0  
 
0
141
1
avatar+1195 

Points \(P\) and \(R\) are located at (1, 3) and (7, 15) respectively. Point \(M\) is the midpoint of segment \(PR\). Segment \(PR\) is reflected over the \(x\)-axis. What is the sum of the coordinates of the image of point  \(M\)(the midpoint of the reflected segment)?

 Jun 8, 2019

Best Answer 

 #1
avatar+8853 
+3

point M  =  midpoint of segment PR  =  \(\Big( \frac{1+7}{2},\frac{3+15}{2}\Big)\ =\ \Big( \frac{8}{2},\frac{18}{2}\Big)\)  =  (4, 9)

 

To reflect segment PR over the x-axis, we make the y-coordinate of each of its points negative. So...

 

image of point M  =  (4, -9)

 

sum of the coordinates of the image of point M  =  4 + -9  =  -5

 

Here's a graph: https://www.desmos.com/calculator/bmiffafl6d

 Jun 8, 2019
 #1
avatar+8853 
+3
Best Answer

point M  =  midpoint of segment PR  =  \(\Big( \frac{1+7}{2},\frac{3+15}{2}\Big)\ =\ \Big( \frac{8}{2},\frac{18}{2}\Big)\)  =  (4, 9)

 

To reflect segment PR over the x-axis, we make the y-coordinate of each of its points negative. So...

 

image of point M  =  (4, -9)

 

sum of the coordinates of the image of point M  =  4 + -9  =  -5

 

Here's a graph: https://www.desmos.com/calculator/bmiffafl6d

hectictar Jun 8, 2019

49 Online Users

avatar
avatar