+0

# help

0
247
1

Points $$P$$ and $$R$$ are located at (1, 3) and (7, 15) respectively. Point $$M$$ is the midpoint of segment $$PR$$. Segment $$PR$$ is reflected over the $$x$$-axis. What is the sum of the coordinates of the image of point  $$M$$(the midpoint of the reflected segment)?

Jun 8, 2019

#1
+3

point M  =  midpoint of segment PR  =  $$\Big( \frac{1+7}{2},\frac{3+15}{2}\Big)\ =\ \Big( \frac{8}{2},\frac{18}{2}\Big)$$  =  (4, 9)

To reflect segment PR over the x-axis, we make the y-coordinate of each of its points negative. So...

image of point M  =  (4, -9)

sum of the coordinates of the image of point M  =  4 + -9  =  -5

Here's a graph: https://www.desmos.com/calculator/bmiffafl6d

Jun 8, 2019

#1
+3

point M  =  midpoint of segment PR  =  $$\Big( \frac{1+7}{2},\frac{3+15}{2}\Big)\ =\ \Big( \frac{8}{2},\frac{18}{2}\Big)$$  =  (4, 9)

To reflect segment PR over the x-axis, we make the y-coordinate of each of its points negative. So...

image of point M  =  (4, -9)

sum of the coordinates of the image of point M  =  4 + -9  =  -5

Here's a graph: https://www.desmos.com/calculator/bmiffafl6d

hectictar Jun 8, 2019