We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
0
97
1
avatar+1229 

Points \(P\) and \(R\) are located at (1, 3) and (7, 15) respectively. Point \(M\) is the midpoint of segment \(PR\). Segment \(PR\) is reflected over the \(x\)-axis. What is the sum of the coordinates of the image of point  \(M\)(the midpoint of the reflected segment)?

 Jun 8, 2019

Best Answer 

 #1
avatar+8759 
+3

point M  =  midpoint of segment PR  =  \(\Big( \frac{1+7}{2},\frac{3+15}{2}\Big)\ =\ \Big( \frac{8}{2},\frac{18}{2}\Big)\)  =  (4, 9)

 

To reflect segment PR over the x-axis, we make the y-coordinate of each of its points negative. So...

 

image of point M  =  (4, -9)

 

sum of the coordinates of the image of point M  =  4 + -9  =  -5

 

Here's a graph: https://www.desmos.com/calculator/bmiffafl6d

 Jun 8, 2019
 #1
avatar+8759 
+3
Best Answer

point M  =  midpoint of segment PR  =  \(\Big( \frac{1+7}{2},\frac{3+15}{2}\Big)\ =\ \Big( \frac{8}{2},\frac{18}{2}\Big)\)  =  (4, 9)

 

To reflect segment PR over the x-axis, we make the y-coordinate of each of its points negative. So...

 

image of point M  =  (4, -9)

 

sum of the coordinates of the image of point M  =  4 + -9  =  -5

 

Here's a graph: https://www.desmos.com/calculator/bmiffafl6d

hectictar Jun 8, 2019

33 Online Users

avatar