We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
0
80
1
avatar+850 

In the triangle shown, for \(\angle A\) to be the largest angle of the triangle, it must be that m . What is the least possible value of  \(n-m\),expressed as a common fraction?

 

sorry I dont know why the problem is doing that here is what that odd "m" stands for. m < x < n

 Apr 20, 2019
edited by Logic  Apr 20, 2019
edited by Logic  Apr 20, 2019
edited by Logic  Apr 20, 2019
 #1
avatar+101838 
+1

OK.....no prob....I think I see what we need...

 

If  A is the greatest angle, then BC is the greatest side........so....  we have these possible  inequalities

 

x + 9 <   (3x) + (x + 4)          and     (3x )+ (x + 9 )  > x + 4      or   (x + 4) +  (x + 9) >  3x 

x + 9 < 4x + 4                                    4x  + 9   > x + 4                     2x  + 13 >  3x

5 <  3x                                                3x > -5                                   13 > x

5/3 < x                                                  x > -5/3                                 x < 13

 

We must take the smallest  intherval for our answers....this is

 

5/3 < x < 13

 

So

 

n - m   =   13 - 5/3  =   39/3 - 5/3  =   34 / 3

 

 

 

cool cool cool

 Apr 20, 2019

14 Online Users

avatar