+0

# help

-1
172
2
+626

Real numbers $$x$$ and $$y$$ have a difference of 16 and a product of 23. Find $$x^2+y^2$$.

Sep 30, 2018

#1
+2340
+2

This problem is easier than it looks at first glance. If you utilize clever algebraic manipulation, this problem becomes simpler.

 $$x-y=16$$ $$xy=23$$ $$(x-y)^2=16^2$$ $$\boxed{1}\hspace{1mm}x^2-2xy+y^2=256$$ $$\boxed{2}\hspace{1mm}2xy=46$$

Notice what I have done. I have manipulated the information I know about these real numbers, and y , and I am manipulating it in a way that is much more convenient for this particular problem. The only thing left to do is add the equations together.

$$\boxed{1}\hspace{1mm}x^2-2xy+y^2=256\\ \boxed{2}\hspace{5mm}+2xy\hspace{10mm}=46\\ \overline{\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad}\\ \hspace{18mm}x^2+y^2=302$$

Sep 30, 2018
#2
+18030
+3

Another method (though just a bit more difficult than x-factor's answer)

x-y=16

x = 16+y

xy = 23

(16+y)y=23

y^2 +16y -23=0    use quadratic formula to find y = 1.3273      or    -17.3273

then        x = 17.3273     or      -1.3273

then   x^2 + y^2  = 302     (pick either x,y pair above....same result)

Sep 30, 2018