We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
-1
61
1
avatar+1028 

Points $A$ and $B$ are on parabola $y=3x^2-5x-3$, and the origin is the midpoint of $\overline{AB}$. Find the square of the length of $\overline{AB}$.

 Jul 21, 2019
 #1
avatar+22892 
+1

Points\( A\) and \(B\) are on parabola \(y=3x^2-5x-3\), and the origin is the midpoint of \(\overline{AB}\).
Find the square of the length of \(\overline{AB}\).

 

\(\text{ Let $A(x_A,\ y_A)$ and $B(x_B,\ y_B)$ }\)

 

\(\begin{array}{|lrcll|} \hline (1) & y_A&=&3x_A^2-5x_A-3 \\ (2) & y_B&=&3x_B^2-5x_B-3 \\ (3) & x_B&=&-x_A\\ (4) & y_B&=&-y_A\\ \hline \end{array}\)

 

\(\begin{array}{|rcll|} \hline (1) & y_A&=&3x_A^2-5x_A-3 \\ \hline (2) & y_B&=&3x_B^2-5x_B-3 \quad &| \quad y_B=-y_A,\ x_B=-x_A \\ & -y_A&=&3(-x_A)^2-5(-x_A)-3 \\ (2)^* & -y_A&=&3x_A^2+5x_A-3 \\ \hline (1)+(2)^*: & y_A-y_A&=&3x_A^2-5x_A-3+3x_A^2+5x_A-3\\ & 0&=&6x_A^2-6 \quad &| \quad : 6 \\ & 0&=&x_A^2-1 \\ & x_A^2 &=& 1 \\ & \mathbf{x_A} &=& \mathbf{1} \\ & \mathbf{x_B} &=& -x_A = \mathbf{-1} \\ \hline & y_A &=& 3x_A^2-5x_A-3 \\ & &=& 3(1)^2-5(1)-3 \\ & &=& 3-5-3 \\ & \mathbf{y_A} &=& \mathbf{-5} \\ & \mathbf{y_B} &=& -y_A = -(-5) = \mathbf{5} \\ \hline \end{array} \)

 

\(\begin{array}{|rcll|} \hline A(1,\ -5),\ B(-1,\ 5) \\\\ \text{The square of the length of } \overline{AB} : \\ \left(1-(-1)\right)^2 + \left(-5-(5)\right)^2\\ =2^2+(-10)^2 \\ =4+100 \\ \mathbf{= 104} \\ \hline \end{array} \)

 

laugh

 Jul 22, 2019
edited by heureka  Jul 22, 2019

20 Online Users

avatar