+0  
 
0
78
1
avatar+554 

Express \(\dfrac{30+19i}{4+9i}\) in the form \(a + bi\), where  \(a\)and \(b\) are real numbers.

 Sep 29, 2018
 #1
avatar
+1

Simplify the following:
(19 i + 30)/(9 i + 4)

Multiply numerator and denominator of (19 i + 30)/(9 i + 4) by the conjugate of the denominator.


Multiply numerator and denominator of (19 i + 30)/(9 i + 4) by 4 - 9 i:
((19 i + 30) (-9 i + 4))/((9 i + 4) (-9 i + 4))

 

Multiply 4 + 9 i and 4 - 9 i together using FOIL.
(4 + 9 i) (4 - 9 i) = 4×4 + 4 (-9 i) + 9 i×4 + 9 i (-9 i) = 16 - 36 i + 36 i + 81 = 97:
((19 i + 30) (-9 i + 4))/97

 

Multiply 30 + 19 i and 4 - 9 i together using FOIL.
(30 + 19 i) (4 - 9 i) = 30×4 + 30 (-9 i) + 19 i×4 + 19 i (-9 i) = 120 - 270 i + 76 i + 171 = 291 - 194 i:
(-194 i + 291)/97

 

Factor common terms from -194 i + 291.
Factor 97 out of 291 - 194 i giving 97 (3 - 2 i):
(97 (-2 i + 3))/97

 

Cancel common terms in the numerator and denominator of (97 (-2 i + 3))/97.
(97 (-2 i + 3))/97 = 97/97×(-2 i + 3) = -2 i + 3:
-2 i + 3 = 3 - 2i

 Sep 29, 2018

17 Online Users

avatar
avatar
avatar
avatar

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.