We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
-1
223
1
avatar

i need help please 

 Jul 12, 2018

Best Answer 

 #1
avatar+22343 
+1

i need help please

 

\(\begin{array}{|lrcll|} \hline & y &=& x^2+bx+c \\ \hline (0,14): & -14 &=& 0^2+b\cdot 0 + c \\ & -14 & = & c \\ & \mathbf{c} & \mathbf{=} & \mathbf{-14} \\ \hline (2,0): & 0 &=& 2^2+b\cdot 2 + c \quad & | \quad c = -14 \\ & 0 &=& 2^2+b\cdot 2 -14 \\ & 0 &=& 4+2b -14 \\ & 2b &=& 14-4 \\ & 2b &=& 10 \\ & \mathbf{b} & \mathbf{=} & \mathbf{5} \\ \hline & \mathbf{y} & \mathbf{=} & \mathbf{x^2+5x-14} \\ \hline \end{array}\)

 

\(\begin{array}{|rcll|} \hline x^2+5x-14 &=& 0 \\ x &=& \dfrac{-5\pm \sqrt{25-4\cdot (-14) } }{2} \\ &=& \dfrac{-5\pm \sqrt{81} }{2} \\ &=& \dfrac{-5\pm 9 }{2} \\\\ x_1 &=& \dfrac{-5+ 9 }{2} \\ \mathbf{x_1} & \mathbf{=} & \mathbf{2} \\\\ x_2 &=& \dfrac{-5- 9 }{2} \\ \mathbf{x_2} & \mathbf{=} & \mathbf{-7} \\ \hline \end{array}\)

 

Point P at (-7,0)

\(\begin{array}{|rcll|} \hline x_{\text{turning point}} &=& \dfrac{x_1+x_2}{2} \\\\ &=& \dfrac{2-7}{2} \\\\ &=& \dfrac{-5}{2} \\\\ &\mathbf{=} & \mathbf{-2.5} \\ \\ \hline y_{\text{turning point}} &=& (-2.5)^2 +5\cdot (-2.5) -14 \\ &=& 6.25 -12.5 -14 \\ &\mathbf{=} & \mathbf{-20.25} \\ \hline \end{array}\)

 

The x-coordinate of the turning point is -2.5

 

 

laugh

 Jul 12, 2018
 #1
avatar+22343 
+1
Best Answer

i need help please

 

\(\begin{array}{|lrcll|} \hline & y &=& x^2+bx+c \\ \hline (0,14): & -14 &=& 0^2+b\cdot 0 + c \\ & -14 & = & c \\ & \mathbf{c} & \mathbf{=} & \mathbf{-14} \\ \hline (2,0): & 0 &=& 2^2+b\cdot 2 + c \quad & | \quad c = -14 \\ & 0 &=& 2^2+b\cdot 2 -14 \\ & 0 &=& 4+2b -14 \\ & 2b &=& 14-4 \\ & 2b &=& 10 \\ & \mathbf{b} & \mathbf{=} & \mathbf{5} \\ \hline & \mathbf{y} & \mathbf{=} & \mathbf{x^2+5x-14} \\ \hline \end{array}\)

 

\(\begin{array}{|rcll|} \hline x^2+5x-14 &=& 0 \\ x &=& \dfrac{-5\pm \sqrt{25-4\cdot (-14) } }{2} \\ &=& \dfrac{-5\pm \sqrt{81} }{2} \\ &=& \dfrac{-5\pm 9 }{2} \\\\ x_1 &=& \dfrac{-5+ 9 }{2} \\ \mathbf{x_1} & \mathbf{=} & \mathbf{2} \\\\ x_2 &=& \dfrac{-5- 9 }{2} \\ \mathbf{x_2} & \mathbf{=} & \mathbf{-7} \\ \hline \end{array}\)

 

Point P at (-7,0)

\(\begin{array}{|rcll|} \hline x_{\text{turning point}} &=& \dfrac{x_1+x_2}{2} \\\\ &=& \dfrac{2-7}{2} \\\\ &=& \dfrac{-5}{2} \\\\ &\mathbf{=} & \mathbf{-2.5} \\ \\ \hline y_{\text{turning point}} &=& (-2.5)^2 +5\cdot (-2.5) -14 \\ &=& 6.25 -12.5 -14 \\ &\mathbf{=} & \mathbf{-20.25} \\ \hline \end{array}\)

 

The x-coordinate of the turning point is -2.5

 

 

laugh

heureka Jul 12, 2018

10 Online Users

avatar
avatar