+0  
 
-1
69
1
avatar

i need help please 

Guest Jul 12, 2018

Best Answer 

 #1
avatar+20004 
+1

i need help please

 

\(\begin{array}{|lrcll|} \hline & y &=& x^2+bx+c \\ \hline (0,14): & -14 &=& 0^2+b\cdot 0 + c \\ & -14 & = & c \\ & \mathbf{c} & \mathbf{=} & \mathbf{-14} \\ \hline (2,0): & 0 &=& 2^2+b\cdot 2 + c \quad & | \quad c = -14 \\ & 0 &=& 2^2+b\cdot 2 -14 \\ & 0 &=& 4+2b -14 \\ & 2b &=& 14-4 \\ & 2b &=& 10 \\ & \mathbf{b} & \mathbf{=} & \mathbf{5} \\ \hline & \mathbf{y} & \mathbf{=} & \mathbf{x^2+5x-14} \\ \hline \end{array}\)

 

\(\begin{array}{|rcll|} \hline x^2+5x-14 &=& 0 \\ x &=& \dfrac{-5\pm \sqrt{25-4\cdot (-14) } }{2} \\ &=& \dfrac{-5\pm \sqrt{81} }{2} \\ &=& \dfrac{-5\pm 9 }{2} \\\\ x_1 &=& \dfrac{-5+ 9 }{2} \\ \mathbf{x_1} & \mathbf{=} & \mathbf{2} \\\\ x_2 &=& \dfrac{-5- 9 }{2} \\ \mathbf{x_2} & \mathbf{=} & \mathbf{-7} \\ \hline \end{array}\)

 

Point P at (-7,0)

\(\begin{array}{|rcll|} \hline x_{\text{turning point}} &=& \dfrac{x_1+x_2}{2} \\\\ &=& \dfrac{2-7}{2} \\\\ &=& \dfrac{-5}{2} \\\\ &\mathbf{=} & \mathbf{-2.5} \\ \\ \hline y_{\text{turning point}} &=& (-2.5)^2 +5\cdot (-2.5) -14 \\ &=& 6.25 -12.5 -14 \\ &\mathbf{=} & \mathbf{-20.25} \\ \hline \end{array}\)

 

The x-coordinate of the turning point is -2.5

 

 

laugh

heureka  Jul 12, 2018
 #1
avatar+20004 
+1
Best Answer

i need help please

 

\(\begin{array}{|lrcll|} \hline & y &=& x^2+bx+c \\ \hline (0,14): & -14 &=& 0^2+b\cdot 0 + c \\ & -14 & = & c \\ & \mathbf{c} & \mathbf{=} & \mathbf{-14} \\ \hline (2,0): & 0 &=& 2^2+b\cdot 2 + c \quad & | \quad c = -14 \\ & 0 &=& 2^2+b\cdot 2 -14 \\ & 0 &=& 4+2b -14 \\ & 2b &=& 14-4 \\ & 2b &=& 10 \\ & \mathbf{b} & \mathbf{=} & \mathbf{5} \\ \hline & \mathbf{y} & \mathbf{=} & \mathbf{x^2+5x-14} \\ \hline \end{array}\)

 

\(\begin{array}{|rcll|} \hline x^2+5x-14 &=& 0 \\ x &=& \dfrac{-5\pm \sqrt{25-4\cdot (-14) } }{2} \\ &=& \dfrac{-5\pm \sqrt{81} }{2} \\ &=& \dfrac{-5\pm 9 }{2} \\\\ x_1 &=& \dfrac{-5+ 9 }{2} \\ \mathbf{x_1} & \mathbf{=} & \mathbf{2} \\\\ x_2 &=& \dfrac{-5- 9 }{2} \\ \mathbf{x_2} & \mathbf{=} & \mathbf{-7} \\ \hline \end{array}\)

 

Point P at (-7,0)

\(\begin{array}{|rcll|} \hline x_{\text{turning point}} &=& \dfrac{x_1+x_2}{2} \\\\ &=& \dfrac{2-7}{2} \\\\ &=& \dfrac{-5}{2} \\\\ &\mathbf{=} & \mathbf{-2.5} \\ \\ \hline y_{\text{turning point}} &=& (-2.5)^2 +5\cdot (-2.5) -14 \\ &=& 6.25 -12.5 -14 \\ &\mathbf{=} & \mathbf{-20.25} \\ \hline \end{array}\)

 

The x-coordinate of the turning point is -2.5

 

 

laugh

heureka  Jul 12, 2018

43 Online Users

avatar
avatar
avatar
avatar

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.