We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
+1
160
2
avatar+200 

Let k be the largest integer such that 343!/7^k is an integer. What is the remainder when 343!/7^k is divided by 7?

 Jan 5, 2019
 #1
avatar
+3

Factor 343!
2^337×3^169×5^83×7^57×11^33×13^28×17^21×19^18×23^14×29^11×31^11×37^9×41^8×43^7×47^7×53^6×59^5×61^5×67^5×71^4×73^4×79^4×83^4×89^3×97^3×101^3×103^3×107^3×109^3×113^3×127^2×131^2×137^2×139^2×149^2×151^2×157^2×163^2×167^2×173×179×181×191×193×197×199×211×223×227×229×233×239×241×251×257×263×269×271×277×281×283×293×307×311×313×317×331×337 (918 prime factors, 68 distinct). 
It follows from the above that:
[343! / 7^57] is an integer. And:

[343! / 7^57] mod 7 = 6

 Jan 6, 2019
 #2
avatar+200 
+3

Thanks so much!!!


Really appreciate this community, I may come around to creating an account!

sudsw12  Jan 6, 2019

9 Online Users

avatar