+0  
 
0
173
2
avatar+79 

Let p>5 be a prime. Find all of the possible remainders that p^2 can leave when divided by 30.

 Jun 13, 2019
 #1
avatar
0

All the primes > 5 when squared mod 30 give a remainder of either 1 or 19.

 Jun 13, 2019
 #2
avatar
0

Here is a short computer code to check the first 165 prime numbers between 7 and 1,000:
n=7; c=0;m=1000; a=if(isprime(n), goto4, goto6);print(n^2)%30,", ",;c=c+1; n++; if(n >Total = ",c
[19 , 1 , 19 , 19 , 1 , 19 , 1 , 1 , 19 , 1 , 19 , 19 , 19 , 1 , 1 , 19 , 1 , 19 , 1 , 19 , 1 , 19 , 1 , 19 , 19 , 1 , 19 , 19 , 1 , 19 , 1 , 1 , 1 , 19 , 19 , 19 , 19 , 1 , 1 , 1 , 19 , 19 , 1 , 1 , 19 , 19 , 1 , 19 , 1 , 1 , 1 , 19 , 19 , 1 , 1 , 19 , 1 , 19 , 19 , 19 , 1 , 19 , 19 , 1 , 19 , 19 , 1 , 19 , 1 , 19 , 19 , 1 , 19 , 1 , 19 , 1 , 1 , 1 , 1 , 1 , 19 , 1 , 19 , 1 , 19 , 1 , 19 , 19 , 1 , 19 , 1 , 1 , 19 , 1 , 1 , 19 , 1 , 19 , 19 , 19 , 1 , 1 , 19 , 19 , 19 , 1 , 1 , 19 , 19 , 19 , 1 , 1 , 1 , 19 , 19 , 19 , 1 , 1 , 19 , 19 , 19 , 1 , 1 , 1 , 1 , 19 , 19 , 1 , 19 , 1 , 19 , 1 , 1 , 19 , 19 , 19 , 1 , 1 , 1 , 19 , 19 , 1 , 1 , 19 , 19 , 1 , 19 , 19 , 1 , 19 , 19 , 19 , 1 , 1 , 1 , 19 , 1 , 19 , 19 , 19 , 1 , 19 , 19 , 1 , 19]>> Total =  165

 Jun 13, 2019

8 Online Users

avatar