We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
0
171
1
avatar+169 

A line segment begins at (2, 5). It is 10 units long and ends at the point (-6, y) where $y > 0. What is the value of y?

 Jun 27, 2018

Best Answer 

 #1
avatar+7616 
+2

By the distance formula...

 

distance between  (2, 5)  and  (-6, y)   =   \(\sqrt{(-6-2)^2+(y-5)^2}\)

 

The problem tells us that the distance between  (2, 5)  and  (-6, y)  is  10 units, so.....

 

\(\sqrt{(-6-2)^2+(y-5)^2}=10\)

                                                          Square both sides of the equation.

(-6 - 2)2 + (y - 5)2  =  100

                                                          Multiply out each exponent on the left side.

( -8 )2 + (y - 5)(y - 5)  =  100

 

64 + y2 - 10y + 25  =  100

                                                          Combine  64  and  25  to get  89

y2 - 10y + 89  =  100

                                                          Subtract  100  from both sides of the equation.

y2 - 10y - 11  =  0

                                                          Factor the left side.

(y - 11)(y + 1)  =  0

                                                          Set each factor equal to zero and solve for  y .

y - 11  =   0       or       y + 1  =  0

   y  =  11                      y  =  -1

 

Since  y > 0  ,  the solution must be  y = 11   smiley

 Jun 27, 2018
 #1
avatar+7616 
+2
Best Answer

By the distance formula...

 

distance between  (2, 5)  and  (-6, y)   =   \(\sqrt{(-6-2)^2+(y-5)^2}\)

 

The problem tells us that the distance between  (2, 5)  and  (-6, y)  is  10 units, so.....

 

\(\sqrt{(-6-2)^2+(y-5)^2}=10\)

                                                          Square both sides of the equation.

(-6 - 2)2 + (y - 5)2  =  100

                                                          Multiply out each exponent on the left side.

( -8 )2 + (y - 5)(y - 5)  =  100

 

64 + y2 - 10y + 25  =  100

                                                          Combine  64  and  25  to get  89

y2 - 10y + 89  =  100

                                                          Subtract  100  from both sides of the equation.

y2 - 10y - 11  =  0

                                                          Factor the left side.

(y - 11)(y + 1)  =  0

                                                          Set each factor equal to zero and solve for  y .

y - 11  =   0       or       y + 1  =  0

   y  =  11                      y  =  -1

 

Since  y > 0  ,  the solution must be  y = 11   smiley

hectictar Jun 27, 2018

14 Online Users