We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.

+0

# Math Help

0
171
1
+169

A line segment begins at (2, 5). It is 10 units long and ends at the point (-6, y) where \$y > 0. What is the value of y?

Jun 27, 2018

### Best Answer

#1
+7616
+2

By the distance formula...

distance between  (2, 5)  and  (-6, y)   =   $$\sqrt{(-6-2)^2+(y-5)^2}$$

The problem tells us that the distance between  (2, 5)  and  (-6, y)  is  10 units, so.....

$$\sqrt{(-6-2)^2+(y-5)^2}=10$$

Square both sides of the equation.

(-6 - 2)2 + (y - 5)2  =  100

Multiply out each exponent on the left side.

( -8 )2 + (y - 5)(y - 5)  =  100

64 + y2 - 10y + 25  =  100

Combine  64  and  25  to get  89

y2 - 10y + 89  =  100

Subtract  100  from both sides of the equation.

y2 - 10y - 11  =  0

Factor the left side.

(y - 11)(y + 1)  =  0

Set each factor equal to zero and solve for  y .

y - 11  =   0       or       y + 1  =  0

y  =  11                      y  =  -1

Since  y > 0  ,  the solution must be  y = 11

Jun 27, 2018

### 1+0 Answers

#1
+7616
+2
Best Answer

By the distance formula...

distance between  (2, 5)  and  (-6, y)   =   $$\sqrt{(-6-2)^2+(y-5)^2}$$

The problem tells us that the distance between  (2, 5)  and  (-6, y)  is  10 units, so.....

$$\sqrt{(-6-2)^2+(y-5)^2}=10$$

Square both sides of the equation.

(-6 - 2)2 + (y - 5)2  =  100

Multiply out each exponent on the left side.

( -8 )2 + (y - 5)(y - 5)  =  100

64 + y2 - 10y + 25  =  100

Combine  64  and  25  to get  89

y2 - 10y + 89  =  100

Subtract  100  from both sides of the equation.

y2 - 10y - 11  =  0

Factor the left side.

(y - 11)(y + 1)  =  0

Set each factor equal to zero and solve for  y .

y - 11  =   0       or       y + 1  =  0

y  =  11                      y  =  -1

Since  y > 0  ,  the solution must be  y = 11

hectictar Jun 27, 2018