We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.

+0

# Math Help

0
254
2
+169

The positive difference between two consecutive perfect squares is 59. What is the greater of the two perfect squares?

Jun 29, 2018

### 2+0 Answers

#1
+147
0

900\( \)

.
Jun 29, 2018
edited by DanielCai  Jun 29, 2018
#2
+101252
+1

Let's see how Daniel might have gotten this answer.....

Let  a  > b   where  a and b are positive integers

Then  ....  .let  b^2  and a^2  be consecutive squares

So

a^2  -  b^2  =  59

( a + b) ( a - b)  = 59

Since   a, b are integers  and  59 is prime...its  only divisors  are 1  and 59

This implies that

a + b   =  59

a - b  = 1           add these

2a  = 60

a  = 30

And

a - b  =1

a - 1   = b

30 - 1  =  29

So

30^2  - 29^2  =

900  - 841  =

59

So  900  is the larger perfect square

Jun 29, 2018