+0  
 
+2
81
2
avatar+797 

One of the zeros of the polynomial function is 2.
 

 

AngelRay  Feb 8, 2018

Best Answer 

 #2
avatar+6953 
+3

Use synthetic division to find  (x4 - 3x3 - 23x2 + 75x - 50)  /  (x - 2) .

 

 

(x4 - 3x3 - 23x2 + 75x - 50)  /  (x - 2)   =  x3 - x2 - 25x + 25

 

So

 

x4 - 3x3 - 23x2 + 75x - 50   =   (x - 2)(x3 - x2 - 25x + 25)

 

Now we can factor   x3 - x2 - 25x + 25  .

 

x3 - x2 - 25x + 25   =   x2(x - 1) - 25(x - 1)   =   (x - 1)(x2 - 25)   =   (x - 1)(x - 5)(x + 5)

 

So

 

x4 - 3x3 - 23x2 + 75x - 50   =   (x - 2)(x - 1)(x - 5)(x + 5)

hectictar  Feb 8, 2018
edited by hectictar  Feb 10, 2018
Sort: 

1+0 Answers

 #2
avatar+6953 
+3
Best Answer

Use synthetic division to find  (x4 - 3x3 - 23x2 + 75x - 50)  /  (x - 2) .

 

 

(x4 - 3x3 - 23x2 + 75x - 50)  /  (x - 2)   =  x3 - x2 - 25x + 25

 

So

 

x4 - 3x3 - 23x2 + 75x - 50   =   (x - 2)(x3 - x2 - 25x + 25)

 

Now we can factor   x3 - x2 - 25x + 25  .

 

x3 - x2 - 25x + 25   =   x2(x - 1) - 25(x - 1)   =   (x - 1)(x2 - 25)   =   (x - 1)(x - 5)(x + 5)

 

So

 

x4 - 3x3 - 23x2 + 75x - 50   =   (x - 2)(x - 1)(x - 5)(x + 5)

hectictar  Feb 8, 2018
edited by hectictar  Feb 10, 2018

8 Online Users

avatar
We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  See details