+0  
 
+2
155
2
avatar+1015 

One of the zeros of the polynomial function is 2.
 

 

AngelRay  Feb 8, 2018

Best Answer 

 #2
avatar+7324 
+3

Use synthetic division to find  (x4 - 3x3 - 23x2 + 75x - 50)  /  (x - 2) .

 

 

(x4 - 3x3 - 23x2 + 75x - 50)  /  (x - 2)   =  x3 - x2 - 25x + 25

 

So

 

x4 - 3x3 - 23x2 + 75x - 50   =   (x - 2)(x3 - x2 - 25x + 25)

 

Now we can factor   x3 - x2 - 25x + 25  .

 

x3 - x2 - 25x + 25   =   x2(x - 1) - 25(x - 1)   =   (x - 1)(x2 - 25)   =   (x - 1)(x - 5)(x + 5)

 

So

 

x4 - 3x3 - 23x2 + 75x - 50   =   (x - 2)(x - 1)(x - 5)(x + 5)

hectictar  Feb 8, 2018
edited by hectictar  Feb 10, 2018
 #2
avatar+7324 
+3
Best Answer

Use synthetic division to find  (x4 - 3x3 - 23x2 + 75x - 50)  /  (x - 2) .

 

 

(x4 - 3x3 - 23x2 + 75x - 50)  /  (x - 2)   =  x3 - x2 - 25x + 25

 

So

 

x4 - 3x3 - 23x2 + 75x - 50   =   (x - 2)(x3 - x2 - 25x + 25)

 

Now we can factor   x3 - x2 - 25x + 25  .

 

x3 - x2 - 25x + 25   =   x2(x - 1) - 25(x - 1)   =   (x - 1)(x2 - 25)   =   (x - 1)(x - 5)(x + 5)

 

So

 

x4 - 3x3 - 23x2 + 75x - 50   =   (x - 2)(x - 1)(x - 5)(x + 5)

hectictar  Feb 8, 2018
edited by hectictar  Feb 10, 2018

35 Online Users

avatar
avatar
avatar

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.