+0  
 
0
29
6
avatar

In the diagram below, $\angle PQR = \angle PRQ = \angle STR = \angle TSR$, $RQ = 8$, and $SQ = 2$. Find $PQ$. [asy] pair A,B,C,D,E; A = (0, 0.9); B = (-0.4, 0); C = (0.4, 0); D = (-0.275, 0.16); E = (0.11, 0.65); draw(A--B); draw(A--C); draw(B--C); draw(B--E); draw(C--D); label("$P$",A,N); label("$Q$", B, S); label("$R$", C, S); label("$S$", D, S); label("$T$", E, W); [/asy]

 Jan 10, 2021
 #1
avatar
0

By similar triangles, PQ = 5*sqrt(3).

 Jan 10, 2021
 #2
avatar
0

That is still wrong can someonelse please try thank You. But still thanks for the effort!smiley

Guest Jan 10, 2021
 #3
avatar
0

In the diagram below, ∠PQR = ∠PRQ = ∠STR = ∠TSR, RQ = 8, and SQ = 2. Find PQ.

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Link: https://web2.0calc.com/questions/hello-plz-help-the-answers-i-ve-received-so-far-are

 

 Jan 10, 2021
 #4
avatar
0

Can someone please do a step by step explanation on how to find the answer.

 Jan 11, 2021
 #5
avatar+861 
+1

In the diagram below, ∠PQR = ∠PRQ = ∠STR = ∠TSR, RQ = 8, and SQ = 2. Find PQ.

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

QR = QT = 8          XT = QS = 2           QL = 5            QZ = 4

 

XY = TL = sqrt( QT² - QL² ) = √39

 

∠PQR = tan-1(√39 / 3)

 

PZ = tan∠PQR * QZ = 8.326663998

 

PQ = sqrt(QZ2 + PZ2) = 9.237604326

 

jugoslav  Jan 11, 2021
 #6
avatar
0

Can you please tell me that in square root form. THX

 Jan 12, 2021

14 Online Users