In the diagram below, $\angle PQR = \angle PRQ = \angle STR = \angle TSR$, $RQ = 8$, and $SQ = 2$. Find $PQ$. [asy] pair A,B,C,D,E; A = (0, 0.9); B = (-0.4, 0); C = (0.4, 0); D = (-0.275, 0.16); E = (0.11, 0.65); draw(A--B); draw(A--C); draw(B--C); draw(B--E); draw(C--D); label("$P$",A,N); label("$Q$", B, S); label("$R$", C, S); label("$S$", D, S); label("$T$", E, W); [/asy]
In the diagram below, ∠PQR = ∠PRQ = ∠STR = ∠TSR, RQ = 8, and SQ = 2. Find PQ.
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Link: https://web2.0calc.com/questions/hello-plz-help-the-answers-i-ve-received-so-far-are
In the diagram below, ∠PQR = ∠PRQ = ∠STR = ∠TSR, RQ = 8, and SQ = 2. Find PQ.
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
QR = QT = 8 XT = QS = 2 QL = 5 QZ = 4
XY = TL = sqrt( QT² - QL² ) = √39
∠PQR = tan-1(√39 / 3)
PZ = tan∠PQR * QZ = 8.326663998
PQ = sqrt(QZ2 + PZ2) = 9.237604326