+0  
 
-3
39
1
avatar

(1) In triangle $ABC,$ $M$ is the midpoint of $\overline{AB}.$ Let $D$ be the point on $\overline{BC}$ such that $\overline{AD}$ bisects $\angle BAC,$ and let the perpendicular bisector of $\overline{AB}$ intersect $\overline{AD}$ at $E.$ If $AB = 44$ and $ME = 12,$ then find the distance from $E$ to line $AC.$

 

(2) Angle bisectors $\overline{AX}$ and $\overline{BY}$ of triangle $ABC$ meet at point $I$. Find $\angle C,$ in degrees, if $\angle AIB = 109^\circ$.
 

(3) A triangle has side lengths of $10,$ $24,$ and $26.$ Let $a$ be the area of the circumcircle. Let $b$ be the area of the incircle. Compute $a - b.$

 May 13, 2020
 #1
avatar
+1

This is clearly homework that you copied from AoPS.  Do not cheat on your homework.

 May 13, 2020

20 Online Users

avatar