+0  
 
0
156
3
avatar

1:

 

2: 

 

3:

Guest Dec 17, 2017
Sort: 

3+0 Answers

 #1
avatar+7056 
+2

1:

 

x + 2  =  \(\sqrt{3x+10}\)

                                           Square both sides of the equation.

(x + 2)2  =  3x + 10

 

(x + 2)(x + 2)  =  3x + 10

 

x2 + 4x + 4  =  3x + 10

                                           Subtract  3x  from both sides and subtract  10  from both sides.

x2 + x - 6  =  0

                                           Factor the left side.

(x + 3)(x - 2)  =  0

                                           Set each factor equal to zero and solve for  x .

x = -3    or    x = 2

 

Plug in  -3  into the original equation to see if it makes it true.

 

-3 + 2  =  \(\sqrt{3(-3)+10}\)      ?

-1  =  \(\sqrt{1}\)      ?

-1  =  1       False.

 

Plug in  2  into the original equation to see if it makes it true.

 

2 + 2  =  \(\sqrt{3(2)+10}\)      ?

4  =  \(\sqrt{16}\)      ?

4  =  4         True.

 

So....

 

(a)     2  is the solution.

(b)    -3  is the extraneous solution, because it does not make the given equation true.

(c)     And this can probably explain what an extraneous solution is better than I can.

hectictar  Dec 17, 2017
edited by hectictar  Dec 17, 2017
 #2
avatar+7056 
+2

2:      x + a  =  \(\sqrt{bx + c}\)

 

For  a , I pick  1 .  For  b , I pick  2 .  And they tell us that  x = 7 .

 

7 + 1  =  \(\sqrt{2(7) + c}\)        Now we just need to solve this for  c .

64  =  14 + c

c  =  50              So...

 

(a)      \(x + 1=\sqrt{2x+50}\)

 

----------

 

(b)      Square both sides to get...

 

(x + 1)2  =  2x + 50

x2 + 2x + 1  =  2x + 50      Subtract  2x  from both sides and subtract  1  from both sides.

x2  =  49                            Take the  ± square root of both sides.

x = 7    or    x = -7

 

Test each potential solution.'

 

7 + 1  =  \(\sqrt{2(7)+50}\)     ?

8  =  \(\sqrt{64}\)      True.

 

-7 + 1  =  \(\sqrt{2(-7)+50}\)

-6  =  \(\sqrt{36}\)     False.

 

So  7  is the solution.  -7  is an extraneous solution.

 

----------

 

If  a = 2 ,  b = 2,  and  x = 7 , the equation is...

 

\(7+2=\sqrt{2(7)+c}\)       And  c  must equal...

 

c  =  67    So......

 

(c)      \(x+2=\sqrt{2x+67}\)

hectictar  Dec 17, 2017
 #3
avatar+7056 
+2

3:

 

(a)     x - 1   =   \(\sqrt{2x+22}\)          and          The extraneous solution is  -3  .

 

 

(b)      bx + c  must be positive or zero because the square root of a negative number is imaginary.

hectictar  Dec 17, 2017

6 Online Users

avatar

New Privacy Policy (May 2018)

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. Please click on "Accept cookies" if you agree to the setting of cookies. Cookies that do not require consent remain unaffected by this, see cookie policy and privacy policy.