+0  
 
+1
41
1
avatar+333 

 

https://vle.mathswatch.co.uk/images/questions/question15392.png

 

 

winkwinkwink

lynx7  Feb 13, 2018
edited by lynx7  Feb 13, 2018

Best Answer 

 #1
avatar+6365 
+3

Let's find  m∠DCO .

Notice that  DO  and  CO  are radii of circle O, so they have the same length. So triangle DCO is isosceles, and the base angles have the same measure.

m∠DCO  =  x

 

 

Let's find  m∠CBO .

Since  AQ  is tangent to circle O at point  B ,  OB  is perpendicular to  AQ  .

m∠QBO  =  90°

2x  +  m∠CBO   =   90°

m∠CBO   =   90° - 2x

 

 

Let's find  m∠OCB .

Notice that  BO  and  CO  are radii of circle O, so they have the same length. So triangle OCB is isosceles, and the base angles have the same measure.

m∠OCB   =   m∠CBO

m∠OCB   =   90° - 2x

 

 

Let's find  m∠BCD .

m∠BCD   =   m∠DCO  +  m∠OCB

m∠BCD   =   ( x )  +  ( 90° - 2x )

m∠BCD   =   x + 90° - 2x

m∠BCD   =   90° - x

 

 

Let's find  m∠DOB .

∠BCD  is an inscribed angle, so its measure is half of that of its intercepted arc, ∠DOB .

m∠BCD   =   (1/2) * m∠DOB

2 * m∠BCD   =   m∠DOB

2 * (90° - x)   =   m∠DOB

m∠DOB   =   180° - 2x

 

 

Let's find  m∠DAB .

The sum of the interior angles of quadrilateral DOBA  =  360°

And   m∠ABO  =  90°   and   m∠ADO  =  90°  ,  so...

  m∠DOB   +  90°  +  90°  +  m∠DAB   =   360°

(180° - 2x)  +  90°  +  90°  +  m∠DAB  =  360°

m∠DAB  =  360°  -  180° + 2x  -  90°  -  90°

m∠DAB  =  2x

y  =  2x

hectictar  Feb 13, 2018
Sort: 

1+0 Answers

 #1
avatar+6365 
+3
Best Answer

Let's find  m∠DCO .

Notice that  DO  and  CO  are radii of circle O, so they have the same length. So triangle DCO is isosceles, and the base angles have the same measure.

m∠DCO  =  x

 

 

Let's find  m∠CBO .

Since  AQ  is tangent to circle O at point  B ,  OB  is perpendicular to  AQ  .

m∠QBO  =  90°

2x  +  m∠CBO   =   90°

m∠CBO   =   90° - 2x

 

 

Let's find  m∠OCB .

Notice that  BO  and  CO  are radii of circle O, so they have the same length. So triangle OCB is isosceles, and the base angles have the same measure.

m∠OCB   =   m∠CBO

m∠OCB   =   90° - 2x

 

 

Let's find  m∠BCD .

m∠BCD   =   m∠DCO  +  m∠OCB

m∠BCD   =   ( x )  +  ( 90° - 2x )

m∠BCD   =   x + 90° - 2x

m∠BCD   =   90° - x

 

 

Let's find  m∠DOB .

∠BCD  is an inscribed angle, so its measure is half of that of its intercepted arc, ∠DOB .

m∠BCD   =   (1/2) * m∠DOB

2 * m∠BCD   =   m∠DOB

2 * (90° - x)   =   m∠DOB

m∠DOB   =   180° - 2x

 

 

Let's find  m∠DAB .

The sum of the interior angles of quadrilateral DOBA  =  360°

And   m∠ABO  =  90°   and   m∠ADO  =  90°  ,  so...

  m∠DOB   +  90°  +  90°  +  m∠DAB   =   360°

(180° - 2x)  +  90°  +  90°  +  m∠DAB  =  360°

m∠DAB  =  360°  -  180° + 2x  -  90°  -  90°

m∠DAB  =  2x

y  =  2x

hectictar  Feb 13, 2018

8 Online Users

avatar
We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  See details