+0  
 
0
3
1
avatar+794 

Find the largest value of x such that 3x^2 + 17x + 15 = 4x^2 - 8x + 37.

 Jan 6, 2024

Best Answer 

 #1
avatar+36900 
+1

3x^2 + 17x + 15 = 4x^2 - 8x + 37.

Simplify to 

 x^2 - 25x +22 = 0         Now use Quadratic formula   with    a = 1      b = -25     and   c = 22

 

\(x = {-b \pm \sqrt{b^2-4ac} \over 2a}\)

 

 

\(x = {-(-25) \pm \sqrt{(-25)^2-4(1)(22)} \over 2(1)}\)         to find x =   25/2  +-  sqrt(537) / 2     the largest of which is  x = 24.0866  

 Jan 6, 2024
 #1
avatar+36900 
+1
Best Answer

3x^2 + 17x + 15 = 4x^2 - 8x + 37.

Simplify to 

 x^2 - 25x +22 = 0         Now use Quadratic formula   with    a = 1      b = -25     and   c = 22

 

\(x = {-b \pm \sqrt{b^2-4ac} \over 2a}\)

 

 

\(x = {-(-25) \pm \sqrt{(-25)^2-4(1)(22)} \over 2(1)}\)         to find x =   25/2  +-  sqrt(537) / 2     the largest of which is  x = 24.0866  

ElectricPavlov Jan 6, 2024

4 Online Users

avatar
avatar