+0  
 
0
129
2
avatar+103 

point A is located at (1,4). Point P ar (3,5) is 1/3 the distance from A to point B.What are the coordinates of point b (SHOW WORK)

Mathisfornerds  Jan 29, 2018
Sort: 

2+0 Answers

 #1
avatar+85757 
+2

Point A is located at (1,4). Point P at (3,5) is 1/3 the distance from A to point B.What are the coordinates of point b

 

Let m be the x coordinate of B

 

So

 

x coordinate of A   +  3 times ( x coordinate of P - x coordinate of A)  =  m

 

1   +  3 ( 3 - 1)  =  m

1  + 3(2)  = m

1 + 6  = m

7  = m

 

Similarly

 

Let n be the y coordinate of B

 

So

 

y coordinate of A   +  3 times ( y coordinate of P - y coordinate of A)  =  n

 

4  +  3 ( 5 - 4)  =  n

4  + 3(1)  = m

4 + 3  = m

7  = m

 

 

So B =  (m, n)  =  (7, 7)

 

cool cool cool

CPhill  Jan 29, 2018
 #2
avatar+19207 
+2

point A is located at (1,4). Point P ar (3,5) is 1/3 the distance from A to point B.

What are the coordinates of point b (SHOW WORK)

 

Formula:

\(\begin{array}{|l|rcll|} \hline & \mathbf{(1-\lambda)\vec{A} + \lambda\vec{B}} &\mathbf{=}& \mathbf{\vec{P}} \\ \hline \lambda = 0 & (1-0)\vec{A} + 0\cdot \vec{B} &=& \vec{A} \ \checkmark \\\\ \lambda = 1 & (1-1)\vec{A} + 1\cdot \vec{B} &=& \vec{B} \ \checkmark \\\\ \lambda = \dfrac13 & \left(1-\dfrac13 \right)\vec{A} + \dfrac13\cdot \vec{B} &=& \vec{P} \quad & | \quad \vec{B} =\ ? \\ \hline \end{array}\)

 

\(\vec{B} =\ ?\)

\(\begin{array}{|rcll|} \hline \left(1-\dfrac13 \right)\vec{A} + \dfrac13\cdot \vec{B} &=& \vec{P} \quad & | \quad \vec{B} =\ ? \\\\ \dfrac23 \vec{A} + \dfrac13 \vec{B} &=& \vec{P} \quad & | \quad \cdot 3 \\ \\ 2 \vec{A} + \vec{B} &=& 3 \vec{P} \quad & | \quad - 2 \vec{A} \\\\ \mathbf{\vec{B}} &\mathbf{=}& \mathbf{3 \vec{P} - 2 \vec{A}}\quad & | \quad \vec{A} = \binom{1}{4} \quad \vec{P} = \binom{3}{5} \\\\ \vec{B} &=& 3\binom{3}{5} - 2 \binom{1}{4} \\\\ \vec{B} &=& \binom{9}{15} - \binom{2}{8} \\\\ \vec{B} &=& \binom{9-2}{15-8} \\\\ \mathbf{\vec{B}} &\mathbf{=}& \mathbf{\binom{7}{7}} \\ \hline \end{array}\)

 

 

laugh

heureka  Jan 29, 2018

14 Online Users

We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  See details