+0  
 
0
305
2
avatar

What is the frequency of the function f(x)?

f(x)=3cos(πx)−2

Express the answer in fraction form

 

 

What is the period of the function f(x) shown in the graph?

A sinusoid function graphed on a coordinate plane. The horizontal x-axis ranges from negative 5 pi over 4 to 5 pi over 4 in increments of pi over 4. The vertical y-axis ranges from negative 1 to 8 in increments of 0.5. The function begins at begin ordered pair negative 5 pi over 4 comma 1 end ordered pair and increases in increments of pi over 4 until reaching begin ordered pair 5 pi over 4 comma 7 end ordered pair. The function begins at begin ordered pair negative 5 pi over 4 comma 1 end ordered pair and increases to a maximum value of begin ordered pair negative 3 pi over 4 comma 7 end ordered pair. The graph then decreases to a minimum value of begin ordered pair negative pi over 4 comma 1 end ordered pair and increases to a maximum value of begin ordered pair pi over 4 comma 7 end ordered pair. The graph then decreases to a minimum value of begin ordered pair 3 pi over 4 comma 1 end ordered pair and increases to a maximum value of begin ordered pair 5 pi over 4 comma 7 end ordered pair.

Guest Feb 17, 2018

Best Answer 

 #2
avatar+12753 
+1

For the first question, the period is '2'    f= 1/period, so the frequency is  ' 1/2 '

 

For the second question, the period is pi     f= 1/period =   1/pi

ElectricPavlov  Feb 17, 2018
 #1
avatar+88898 
+1

First one  :

 

In the form    Acos(Bx) + C

 

We can  find this as follows

 

B  =  pi

 

B   =  2pi / period   

 

pi  = 2pi/ period      rearrange

 

period  =  2pi / pi    =  2

 

Andd the frequency  is     1  / period  =   1 / 2

 

 

Second one :

 

The period is   π

 

The frequency  is  :     1  / period    =   1  / π

 

 

 

cool cool cool

CPhill  Feb 17, 2018
edited by CPhill  Feb 18, 2018
 #2
avatar+12753 
+1
Best Answer

For the first question, the period is '2'    f= 1/period, so the frequency is  ' 1/2 '

 

For the second question, the period is pi     f= 1/period =   1/pi

ElectricPavlov  Feb 17, 2018

15 Online Users

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.