+0  
 
+1
711
3
avatar

Without using a calculator, find the largest prime factor of 15^6 - 7^6

Guest Dec 22, 2017
 #1
avatar+946 
+2

15^6 - 7^6 => 
(15^3 - 7^3) * (15^3 + 7^3) => 
(15 - 7) * (15^2 + 15 * 7 + 7^2) * (15 + 7) * (15^2 - 15 * 7 + 7^2) => 
8 * (225 + 105 + 49) * 22 * (225 - 105 + 49) => 
8 * 22 * (274 + 105) * (274 - 105) => 
8 * 22 * 379 * 169 => 
2^3 * 2 * 11 * 13^2 * 379 => 
2^4 * 11 * 13^2 * 379

 

This is not my work, but a solution on Yahoo Answers. 

Julius  Dec 22, 2017
 #2
avatar+615 
+2

Both 15^6 and  7^6 are squares, so we can factor 15^6 - 7^6  as the difference of squares:

 

15^6-7^6 = (15^3-7^3)(15^3+7^3)


We can pound out the computation from here (yuck!), or we can factor 15^3-7^3  as a difference of cubes and 15^3+7^3 as a sum of cubes:

 

[(15^3-7^3)(15^3+7^3) = [(15-7)(15^2+15*7 + 7^2)][(15+7)(15^2-15*7 + 7^2)]


The largest of these factors is 379. 

 

I did a better solution on paper, but I can't attach a file, sorry!

supermanaccz  Dec 22, 2017
edited by supermanaccz  Dec 22, 2017
 #3
avatar+87641 
0

Excellent, Julius and superman !!!!

 

 

cool cool cool

CPhill  Dec 22, 2017

11 Online Users

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.