+0  
 
+1
1305
3
avatar

Without using a calculator, find the largest prime factor of 15^6 - 7^6

 Dec 22, 2017
 #1
avatar+956 
+2

15^6 - 7^6 => 
(15^3 - 7^3) * (15^3 + 7^3) => 
(15 - 7) * (15^2 + 15 * 7 + 7^2) * (15 + 7) * (15^2 - 15 * 7 + 7^2) => 
8 * (225 + 105 + 49) * 22 * (225 - 105 + 49) => 
8 * 22 * (274 + 105) * (274 - 105) => 
8 * 22 * 379 * 169 => 
2^3 * 2 * 11 * 13^2 * 379 => 
2^4 * 11 * 13^2 * 379

 

This is not my work, but a solution on Yahoo Answers. 

 Dec 22, 2017
 #2
avatar+637 
+2

Both 15^6 and  7^6 are squares, so we can factor 15^6 - 7^6  as the difference of squares:

 

15^6-7^6 = (15^3-7^3)(15^3+7^3)


We can pound out the computation from here (yuck!), or we can factor 15^3-7^3  as a difference of cubes and 15^3+7^3 as a sum of cubes:

 

[(15^3-7^3)(15^3+7^3) = [(15-7)(15^2+15*7 + 7^2)][(15+7)(15^2-15*7 + 7^2)]


The largest of these factors is 379. 

 

I did a better solution on paper, but I can't attach a file, sorry!

 Dec 22, 2017
edited by supermanaccz  Dec 22, 2017
 #3
avatar+98196 
0

Excellent, Julius and superman !!!!

 

 

cool cool cool

 Dec 22, 2017

32 Online Users

avatar
avatar
avatar
avatar
avatar
avatar