TheXSquaredFactor

avatar
UsernameTheXSquaredFactor
Score2441
Membership
Stats
Questions 3
Answers 956

 #7
avatar+2441 
+1

\((-1)^{\frac{1}{2}}\Rightarrow\sqrt{-1}\)  is a law of fractional exponents. In general terms, \(x^{\frac{a}{b}}=\sqrt[b]{x^a}=\left(\sqrt[b]{x}\right)^a\)

 

Why is this the case? Well, I can attempt to explain it to you.

 

The law of exponents explains how to handle multiplication of exponents with identical bases. 

 

\(x^3*x^2=x^{3+2}=x^5\)

 

Let's try another example but with fractional exponents.

 

\(3^{\frac{1}{2}}*3^{\frac{1}{2}}=3^{\frac{1}{2}+\frac{1}{2}}=3^1=3\)

 

In this example here, \(3^{\frac{1}{2}}\) is a number that when multiplied by itself yields 3. That sounds like the definition of the square root, doesn't it? Therefore, \(3^{\frac{1}{2}}=\sqrt{3}\). One can also expound upon this.

 

\(3^{\frac{1}{3}}*3^{\frac{1}{3}}*3^{\frac{1}{3}}=3^{{\frac{1}{3}}+{\frac{1}{3}}+{\frac{1}{3}}}=3^1=3\)
\(3^{\frac{1}{4}}*3^{\frac{1}{4}}*3^{\frac{1}{4}}*3^{\frac{1}{4}}=3^{\frac{1}{4}+\frac{1}{4}+\frac{1}{4}+\frac{1}{4}}=3^1=3\)
\(3^{\frac{1}{5}}*3^{\frac{1}{5}}*3^{\frac{1}{5}}*3^{\frac{1}{5}}*3^{\frac{1}{5}}=3^{\frac{1}{5}+\frac{1}{5}+\frac{1}{5}+\frac{1}{5}+\frac{1}{5}}=3^1=3\)
\(3^{\frac{1}{x}}*3^{\frac{1}{x}}*3^{\frac{1}{x}}*...*3^{\frac{1}{x}}*3^{\frac{1}{x}}=3^{\frac{1}{x}+\frac{1}{x}+\frac{1}{x}+...+\frac{1}{x}+\frac{1}{x}}=3^1=3\)

 

The pattern continues. \(3^{\frac{1}{3}}\) is a number that when multiplied by itself 3 times yields 3. This is the definition of the cubic root. Then, as you can see, I made a generalization. \(3^{\frac{1}{x}}\), when multiplied x times, yields 3. 

Nov 11, 2017
 #2
avatar+2441 
+3

Another option is to utilize something called the Exterior Angle Theorem. This theorem states that the measure of the exterior angle of a triangle is equal to sum of the two nonadjacent interior (also known as remote) angles. The diagram below does all the speaking for me. 

 

 

Now that this theorem is established, we can save one step. In the given diagram, \(m\angle CAB+m\angle ABC=m\angle BCD\)

 

\(m\angle CAB+m\angle ABC=m\angle BCD\) Exterior Angle Theorem
\(m\angle CAB+85=120\) Substitution Property of Equality
\(m\angle CAB=35^{\circ}\) Subtraction Property of Equality
   

 

Why is this the case? Well, I'm happy to show you why! 

 

 

In this triangle, one is given that this is \(\triangle ABC\) with an exterior angle \(\angle BAD\). Our goal here is to prove that \(m\angle B+m\angle C=m\angle BAD\). I will utilize a two-column proof.

 

Let's assume that \(m\angle BAC=x^{\circ}\).

 

\(m\angle BAC+m\angle B+m\angle C=180^{\circ}\) Triangle Sum Theorem
\(x+m\angle B+m \angle C=180^{\circ}\) Substitution Property of Equality
\(m\angle B+m\angle C=(180-x)^{\circ}\) Subtraction Property of Equality
\(\angle BAC\) and \(\angle BAD\) form a linear pair Definition of a linear pair
\(\angle BAC\) and \(\angle BAD\) are supplementary \(\)Linear Pair Theorem
\(m\angle BAC+m\angle BAD=180^{\circ}\) Definition of supplementary angles
\(x^{\circ}+m\angle BAD=180^{\circ}\) Substitution Property of Equality
\(m\angle BAD=(180-x)^{\circ}\) Subtraction Property of Equality
\(m\angle B+m\angle C=m\angle BAD\) Transitive Property of Equality