+0

# 0.10 = 6.0/v^2 + 0.00050v^2 - 0.033

0
250
1

0.10 = 6.0/v^2 + 0.00050v^2 - 0.033

what is v=?

pls detailed instruction on how to. :)

Guest May 8, 2014

#1
+91436
+8

$$v\ne0$$

$$0.1=\frac{6}{v^2}+0.0005v^2-0.033\\\\ 0.133=\frac{6}{v^2}+0.0005v^2\\\\ 0.133v^2=6+0.0005v^4\\\\$$

substitute x for v2

$$0.0005x^2-0.133x+6=0\\$$

$${\mathtt{0.000\: \!5}}{\mathtt{\,\times\,}}{{\mathtt{x}}}^{{\mathtt{2}}}{\mathtt{\,-\,}}{\mathtt{0.133}}{\mathtt{\,\times\,}}{\mathtt{x}}{\mathtt{\,\small\textbf+\,}}{\mathtt{6}} = {\mathtt{0}} \Rightarrow \left\{ \begin{array}{l}{\mathtt{x}} = {\mathtt{133}}{\mathtt{\,-\,}}{\sqrt{{\mathtt{5\,689}}}}\\ {\mathtt{x}} = {\sqrt{{\mathtt{5\,689}}}}{\mathtt{\,\small\textbf+\,}}{\mathtt{133}}\\ \end{array} \right\} \Rightarrow \left\{ \begin{array}{l}{\mathtt{x}} = {\mathtt{57.574\: \!540\: \!107\: \!467\: \!690\: \!7}}\\ {\mathtt{x}} = {\mathtt{208.425\: \!459\: \!892\: \!532\: \!309\: \!3}}\\ \end{array} \right\}$$

$$v^2=57.574540\:\:\rightarrow v=\pm7.58779\:\: \mbox{approx}$$   or

$$v^2=208.42545989\:\:\rightarrow\:\:v=\pm14.4369\:\:\mbox{approx}$$

I think that is all okay.

Melody  May 8, 2014
Sort:

#1
+91436
+8

$$v\ne0$$

$$0.1=\frac{6}{v^2}+0.0005v^2-0.033\\\\ 0.133=\frac{6}{v^2}+0.0005v^2\\\\ 0.133v^2=6+0.0005v^4\\\\$$

substitute x for v2

$$0.0005x^2-0.133x+6=0\\$$

$${\mathtt{0.000\: \!5}}{\mathtt{\,\times\,}}{{\mathtt{x}}}^{{\mathtt{2}}}{\mathtt{\,-\,}}{\mathtt{0.133}}{\mathtt{\,\times\,}}{\mathtt{x}}{\mathtt{\,\small\textbf+\,}}{\mathtt{6}} = {\mathtt{0}} \Rightarrow \left\{ \begin{array}{l}{\mathtt{x}} = {\mathtt{133}}{\mathtt{\,-\,}}{\sqrt{{\mathtt{5\,689}}}}\\ {\mathtt{x}} = {\sqrt{{\mathtt{5\,689}}}}{\mathtt{\,\small\textbf+\,}}{\mathtt{133}}\\ \end{array} \right\} \Rightarrow \left\{ \begin{array}{l}{\mathtt{x}} = {\mathtt{57.574\: \!540\: \!107\: \!467\: \!690\: \!7}}\\ {\mathtt{x}} = {\mathtt{208.425\: \!459\: \!892\: \!532\: \!309\: \!3}}\\ \end{array} \right\}$$

$$v^2=57.574540\:\:\rightarrow v=\pm7.58779\:\: \mbox{approx}$$   or

$$v^2=208.42545989\:\:\rightarrow\:\:v=\pm14.4369\:\:\mbox{approx}$$

I think that is all okay.

Melody  May 8, 2014

### 9 Online Users

We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  See details