+0

# 1-16+246-4096+...+4294967296

+5
351
2

1-16+246-4096+...+4294967296

Guest Oct 28, 2015

#1
+18712
+30

1-16+246-4096+...+4294967296

If you mean:  1 - 16 + 256 - 4096 +-... + 4294967296          256 instead of 246 !!!

We have:

$$\begin{array}{rcl} a_1&=&1\\ a_2&=&- 16 \\ a_3&=&256 \\ a_4&=&- 4096 \\ \dots \\ a_9 &=& 4294967296\\ \boxed{~ r = \frac{a_{n}}{a_{n-1}} ~}\\ r&=&\frac{ a_4 }{ a_3 }=\frac{ a_3 }{ a_2 }=\frac{ a_2 }{ a_1 }\\ r&=&\frac{ - 4096}{ 256 }=\frac{ 256 }{ - 16 }=\frac{ - 16 }{ 1 }\\ r&=& - 16= - 16= - 16\\ \mathbf{r} &\mathbf{=}& \mathbf{- 16}\\ \boxed{~ a_n = a_1\cdot r^{n-1} \\ a_n = a_1\cdot (-16)^{n-1} ~}\\ a_1 &=& 1\cdot \left( - 16 \right)^{1-1} = 1\\ a_2 &=& 1\cdot \left( - 16 \right)^{2-1} = 1\cdot - 16= - 16\\ a_3 &=& 1\cdot \left( - 16 \right)^{3-1} = 1\cdot \left( - 16 \right)^2 = 256\\ a_4 &=& 1\cdot \left( - 16 \right)^{4-1} = 1\cdot \left( - 16 \right)^3 = - 4096 \\ \dots \\ a_{9} &=& 1\cdot \left(- 16 \right)^{9-1} = 1\cdot \left( - 16 \right)^8 = 4294967296\\ \boxed{~ sum_n = a_1\cdot\frac{1-r^n}{1-r} ~}\\ sum_9 &=& 1 \cdot \frac{1-(-16)^9}{1-(-16)} \\ sum_9 &=&\frac{1+68\ 719\ 476\ 736}{17} \\ sum_9 &=&\frac{68\ 719\ 476\ 737}{17} \\ \mathbf{sum_9} &\mathbf{=}& \mathbf{4\ 042\ 322\ 161}\\ \end{array}$$

1 - 16 + 256 - 4096 +-... + 4294967296 = 4 042 322 161

heureka  Oct 29, 2015
edited by heureka  Oct 29, 2015
Sort:

#1
+18712
+30

1-16+246-4096+...+4294967296

If you mean:  1 - 16 + 256 - 4096 +-... + 4294967296          256 instead of 246 !!!

We have:

$$\begin{array}{rcl} a_1&=&1\\ a_2&=&- 16 \\ a_3&=&256 \\ a_4&=&- 4096 \\ \dots \\ a_9 &=& 4294967296\\ \boxed{~ r = \frac{a_{n}}{a_{n-1}} ~}\\ r&=&\frac{ a_4 }{ a_3 }=\frac{ a_3 }{ a_2 }=\frac{ a_2 }{ a_1 }\\ r&=&\frac{ - 4096}{ 256 }=\frac{ 256 }{ - 16 }=\frac{ - 16 }{ 1 }\\ r&=& - 16= - 16= - 16\\ \mathbf{r} &\mathbf{=}& \mathbf{- 16}\\ \boxed{~ a_n = a_1\cdot r^{n-1} \\ a_n = a_1\cdot (-16)^{n-1} ~}\\ a_1 &=& 1\cdot \left( - 16 \right)^{1-1} = 1\\ a_2 &=& 1\cdot \left( - 16 \right)^{2-1} = 1\cdot - 16= - 16\\ a_3 &=& 1\cdot \left( - 16 \right)^{3-1} = 1\cdot \left( - 16 \right)^2 = 256\\ a_4 &=& 1\cdot \left( - 16 \right)^{4-1} = 1\cdot \left( - 16 \right)^3 = - 4096 \\ \dots \\ a_{9} &=& 1\cdot \left(- 16 \right)^{9-1} = 1\cdot \left( - 16 \right)^8 = 4294967296\\ \boxed{~ sum_n = a_1\cdot\frac{1-r^n}{1-r} ~}\\ sum_9 &=& 1 \cdot \frac{1-(-16)^9}{1-(-16)} \\ sum_9 &=&\frac{1+68\ 719\ 476\ 736}{17} \\ sum_9 &=&\frac{68\ 719\ 476\ 737}{17} \\ \mathbf{sum_9} &\mathbf{=}& \mathbf{4\ 042\ 322\ 161}\\ \end{array}$$

1 - 16 + 256 - 4096 +-... + 4294967296 = 4 042 322 161

heureka  Oct 29, 2015
edited by heureka  Oct 29, 2015
#2
+90988
0

That is some good forensic maths there Heureka

Melody  Oct 29, 2015

### 7 Online Users

We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  See details