+0  
 
+5
351
2
avatar

1-16+246-4096+...+4294967296

Guest Oct 28, 2015

Best Answer 

 #1
avatar+18712 
+30

1-16+246-4096+...+4294967296

 

 

If you mean:  1 - 16 + 256 - 4096 +-... + 4294967296          256 instead of 246 !!!

We have:

\(\begin{array}{rcl} a_1&=&1\\ a_2&=&- 16 \\ a_3&=&256 \\ a_4&=&- 4096 \\ \dots \\ a_9 &=& 4294967296\\ \boxed{~ r = \frac{a_{n}}{a_{n-1}} ~}\\ r&=&\frac{ a_4 }{ a_3 }=\frac{ a_3 }{ a_2 }=\frac{ a_2 }{ a_1 }\\ r&=&\frac{ - 4096}{ 256 }=\frac{ 256 }{ - 16 }=\frac{ - 16 }{ 1 }\\ r&=& - 16= - 16= - 16\\ \mathbf{r} &\mathbf{=}& \mathbf{- 16}\\ \boxed{~ a_n = a_1\cdot r^{n-1} \\ a_n = a_1\cdot (-16)^{n-1} ~}\\ a_1 &=& 1\cdot \left( - 16 \right)^{1-1} = 1\\ a_2 &=& 1\cdot \left( - 16 \right)^{2-1} = 1\cdot - 16= - 16\\ a_3 &=& 1\cdot \left( - 16 \right)^{3-1} = 1\cdot \left( - 16 \right)^2 = 256\\ a_4 &=& 1\cdot \left( - 16 \right)^{4-1} = 1\cdot \left( - 16 \right)^3 = - 4096 \\ \dots \\ a_{9} &=& 1\cdot \left(- 16 \right)^{9-1} = 1\cdot \left( - 16 \right)^8 = 4294967296\\ \boxed{~ sum_n = a_1\cdot\frac{1-r^n}{1-r} ~}\\ sum_9 &=& 1 \cdot \frac{1-(-16)^9}{1-(-16)} \\ sum_9 &=&\frac{1+68\ 719\ 476\ 736}{17} \\ sum_9 &=&\frac{68\ 719\ 476\ 737}{17} \\ \mathbf{sum_9} &\mathbf{=}& \mathbf{4\ 042\ 322\ 161}\\ \end{array}\)

 

1 - 16 + 256 - 4096 +-... + 4294967296 = 4 042 322 161

 

laugh

heureka  Oct 29, 2015
edited by heureka  Oct 29, 2015
Sort: 

2+0 Answers

 #1
avatar+18712 
+30
Best Answer

1-16+246-4096+...+4294967296

 

 

If you mean:  1 - 16 + 256 - 4096 +-... + 4294967296          256 instead of 246 !!!

We have:

\(\begin{array}{rcl} a_1&=&1\\ a_2&=&- 16 \\ a_3&=&256 \\ a_4&=&- 4096 \\ \dots \\ a_9 &=& 4294967296\\ \boxed{~ r = \frac{a_{n}}{a_{n-1}} ~}\\ r&=&\frac{ a_4 }{ a_3 }=\frac{ a_3 }{ a_2 }=\frac{ a_2 }{ a_1 }\\ r&=&\frac{ - 4096}{ 256 }=\frac{ 256 }{ - 16 }=\frac{ - 16 }{ 1 }\\ r&=& - 16= - 16= - 16\\ \mathbf{r} &\mathbf{=}& \mathbf{- 16}\\ \boxed{~ a_n = a_1\cdot r^{n-1} \\ a_n = a_1\cdot (-16)^{n-1} ~}\\ a_1 &=& 1\cdot \left( - 16 \right)^{1-1} = 1\\ a_2 &=& 1\cdot \left( - 16 \right)^{2-1} = 1\cdot - 16= - 16\\ a_3 &=& 1\cdot \left( - 16 \right)^{3-1} = 1\cdot \left( - 16 \right)^2 = 256\\ a_4 &=& 1\cdot \left( - 16 \right)^{4-1} = 1\cdot \left( - 16 \right)^3 = - 4096 \\ \dots \\ a_{9} &=& 1\cdot \left(- 16 \right)^{9-1} = 1\cdot \left( - 16 \right)^8 = 4294967296\\ \boxed{~ sum_n = a_1\cdot\frac{1-r^n}{1-r} ~}\\ sum_9 &=& 1 \cdot \frac{1-(-16)^9}{1-(-16)} \\ sum_9 &=&\frac{1+68\ 719\ 476\ 736}{17} \\ sum_9 &=&\frac{68\ 719\ 476\ 737}{17} \\ \mathbf{sum_9} &\mathbf{=}& \mathbf{4\ 042\ 322\ 161}\\ \end{array}\)

 

1 - 16 + 256 - 4096 +-... + 4294967296 = 4 042 322 161

 

laugh

heureka  Oct 29, 2015
edited by heureka  Oct 29, 2015
 #2
avatar+90988 
0

That is some good forensic maths there Heureka     wink laugh cool

Melody  Oct 29, 2015

7 Online Users

avatar
avatar
We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  See details