+0  
 
0
70
2
avatar

((51)^-1)mod26=?

 

or 51 inverse mod 26=?

Guest Sep 11, 2017
Sort: 

2+0 Answers

 #1
avatar
0

51^-1 mod 26 =? There is no consensus on this !. WolframAlpha gives 25 as the answer, but other calculators disagree and give 51^-1.

Guest Sep 11, 2017
 #2
avatar+18712 
0

((51)^-1)mod26=?

or 51 inverse mod 26=?

 

\(\begin{array}{l} \text{In number theory, }\\ \text{Euler's theorem (also known as Euler's totient theorem)}\\ \text{states that if } \mathbf{m} \text{ and } \mathbf{a} \text{ are coprime positive integers, then }\\ \hline a^{\varphi (m)} \equiv 1 \pmod{m} \qquad \text{, if }~ gcd(a,m)=1 \\\\ \text{or} \\ \\ a^{\varphi (m)} \pmod{m} \equiv 1 \qquad | \qquad \cdot \frac{1}{a}\\ \frac{ a^{\varphi (m)} } {a} \pmod{m} \equiv \frac{1}{a} = a^{-1}\\ a^{\varphi (m)-1} \pmod{m} \equiv \frac{1}{a} = a^{-1}\\ \begin{array}{|rcl|} \hline a^{-1} = \frac{1}{a} \equiv a^{\varphi (m)-1} \pmod{m} \qquad \text{, if }~ gcd(a,m)=1\\ \hline \end{array} \end{array}\)

 

 We need this Formula:

\( \begin{array}{|lrcll|} \hline \text{Let } \varphi(n) \text{ denote the totient function. } \\ \hline \end{array} \)

 

 

Now we can calculate \(\frac{1}{51} \pmod {26} = \ ?\)

1. The greatest common divisor (gcd)

\(gcd(51,26) = 1\)

 

2. \(\varphi(26) = \ ?\)

\(\begin{array}{rcll} \varphi(26) &=& 26\cdot (1- \frac{1}{2} )\cdot (1- \frac{1}{13} ) \qquad \text{ because } ~ 26 = 2\cdot 13 \\ &=& 26\cdot \frac{1}{2} \cdot \frac{12}{13} \\ &=& 12 \\ \end{array}\)

 

3.

\(\begin{array}{rcll} \frac{1}{51} & \equiv & 51^{\varphi (26)-1} \pmod{26} \quad & | \quad \varphi(26)=12 \\ & \equiv & 51^{12-1} \pmod{26} \\ & \equiv & 51^{11} \pmod{26} \quad & | \quad 51\equiv -1 \pmod{26} \\ & \equiv & (-1)^{11} \pmod{26} \quad & | \quad (-1)^{11} = -1 \\ & \equiv & -1 \pmod{26} \\ & \equiv & -1+26 \pmod{26} \\ & \equiv & 25 \pmod{26} \\ \end{array} \)

 

Result:

\(\mathbf{\frac{1}{51} \pmod {26} = 25}\)

 

Proof:

\(\begin{array}{|rcll|} \hline && 51\cdot \frac{1}{51} \pmod{26} \\ &\equiv& 51\cdot 25 \pmod{26} \\ &\equiv& 1275 \pmod{26} \\ &\equiv& 1 \pmod{26} \ \checkmark\\ \hline \end{array} \)

 

laugh

heureka  Sep 12, 2017

11 Online Users

avatar
avatar
avatar
We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  See details