+0  
 
+1
7
6928
2
avatar

A central angle θ in a circle of radius 4 m is subtended by an arc of length 5 m. Find the measure of θ in degrees and in radians. θ = degrees (Round your answer to one decimal place.) θ = radians

 

I have been havng issues with this one for a while. Someone please help me!

Guest Jan 19, 2016

Best Answer 

 #1
avatar+91051 
+10

Circumference = 2pi*r = 2pi*4 = 8pi

 

so

\(\frac{5}{8\pi}=\frac{\theta\;radians}{2\pi}\\ \frac{5*2\pi}{8\pi}=\theta\;radians\\ \theta=\frac{5}{4}\;radians\\~\\ now\\ \pi radians=180 degrees\\ so\\ 1 radian = \frac{180}{\pi}degrees\\ \frac{5}{4}\;radians=\frac{5}{4}*\frac{180}{\pi}degrees\\ \frac{5}{4}\;radians=\frac{225}{\pi}degrees\\~\\ \theta\approx 71.6 \;degrees\)

 

Melody  Jan 21, 2016
Sort: 

2+0 Answers

 #1
avatar+91051 
+10
Best Answer

Circumference = 2pi*r = 2pi*4 = 8pi

 

so

\(\frac{5}{8\pi}=\frac{\theta\;radians}{2\pi}\\ \frac{5*2\pi}{8\pi}=\theta\;radians\\ \theta=\frac{5}{4}\;radians\\~\\ now\\ \pi radians=180 degrees\\ so\\ 1 radian = \frac{180}{\pi}degrees\\ \frac{5}{4}\;radians=\frac{5}{4}*\frac{180}{\pi}degrees\\ \frac{5}{4}\;radians=\frac{225}{\pi}degrees\\~\\ \theta\approx 71.6 \;degrees\)

 

Melody  Jan 21, 2016
 #2
avatar
0

An arc of length 75 m subtends a central angle θ in a circle of radius 25 m. Find the measure of θ in degrees and in radians.

Guest Jun 17, 2016

3 Online Users

We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  See details