+0

# Algebra Question

0
148
2
+52

At a point on the ground 80ft from the base of a​ tree, the distance to the top of the tree is

11ft more than 2 times the height of the tree. Find the height of the tree.

The height of the tree is nothing  ft.

yojaymarojas  May 13, 2017

#1
+5552
+4

Here, h is the height of the tree.

from the Pythagorean theorem:

h2 + 802 = (11 + 2h)2

h2 + 6400 = (11 + 2h)(11 + 2h)

h2 + 6400 = 121 + 44h + 4h2            Subtract h2 and 6400 from both sides.

0 = -6279 + 44h + 3h2                      Rearrange.

0 = 3h2 + 44h - 6279                        Use quadratic formula to solve for h.

$$h = {-44 \pm \sqrt{44^2-4(3)(-6279)} \over 2(3)} \\~\\ h = \frac{-44\pm278}{6} \\~\\ h=\frac{-44+278}{6}=39 \qquad\text{or}\qquad h=\frac{-44-278}{6}=-\frac{161}3$$

So...the height of the tree must be 39 feet

hectictar  May 13, 2017
Sort:

#1
+5552
+4

Here, h is the height of the tree.

from the Pythagorean theorem:

h2 + 802 = (11 + 2h)2

h2 + 6400 = (11 + 2h)(11 + 2h)

h2 + 6400 = 121 + 44h + 4h2            Subtract h2 and 6400 from both sides.

0 = -6279 + 44h + 3h2                      Rearrange.

0 = 3h2 + 44h - 6279                        Use quadratic formula to solve for h.

$$h = {-44 \pm \sqrt{44^2-4(3)(-6279)} \over 2(3)} \\~\\ h = \frac{-44\pm278}{6} \\~\\ h=\frac{-44+278}{6}=39 \qquad\text{or}\qquad h=\frac{-44-278}{6}=-\frac{161}3$$

So...the height of the tree must be 39 feet

hectictar  May 13, 2017
#2
+79794
+2

Let the tree height  = h

And we have a rigrt triangle such that :

h^2  +  80^2   =  (2h + 11)^2     simplify

h^2  +  6400  =  4h^2 + 44h + 121

3h^2 + 44h  - 6279  = 0

Solving this  using  the  quadratic formula and taking the positive answer  we get that h =39 ft

CPhill  May 13, 2017

### 25 Online Users

We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  See details