+0

# algebra

+1
81
3

a^2+b^2+c^2=121 and the question is: what is a+b+c=?

The answe is 17 but I don´t know how to prove it and which sort of method I should use. It should be quite easy since the course as a whole is considered to be basic

Guest Sep 9, 2017

#1
+1

since a + b + c = 17, then one way could be: a=2, b=6, c=9. So, you have:

a^2 + b^2 + c^2 = 2^2 + 6^2 + 9^2 =4 + 36 + 81 =121.

Guest Sep 9, 2017
Sort:

#1
+1

since a + b + c = 17, then one way could be: a=2, b=6, c=9. So, you have:

a^2 + b^2 + c^2 = 2^2 + 6^2 + 9^2 =4 + 36 + 81 =121.

Guest Sep 9, 2017
#2
+1

Yes, I totally get that, but then is when you are aware of the answer, which is not the case from the beginning. So, how do I prove that without being aware of the asnwer?

Guest Sep 10, 2017
#3
+1

Without giving the condition that a+b+c=17, I don't think that you can formally "prove" it since there are other solutions that will satisfy the a^2+b^2+c^2=121. Other solutions could be a=0, b=0, c=11 and a=6, b=6 and c=7.....and so on.

Guest Sep 10, 2017

### 2 Online Users

We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  See details