+0  
 
+1
211
8
avatar

Integrate: ∫x^4[1 - x]^4 / [1 + x^2]dx,from x=0 to 1
Please show the steps. Thank you very much for the help.

Guest Mar 30, 2017
Sort: 

8+0 Answers

 #1
avatar+79818 
+2

Let's first simplify x^4[1 - x]^4 / [1 + x^2]

 

[1 - x]^4  =  [x - 1]^4  =  x^4 - 4x^3 + 6x^2 - 4x + 1

 

So .....  x^4[ 1 - x]^4 / [ 1 + x^2]   =  x^4 [ x^4 - 4x^3 + 6x^2 - 4x + 1] / [1 + x^2] =

 

[ x^8 - 4x^7 + 6x^6 - 4x^5 + x^4] / [ 1 + x^2]

 

Perform synthetic division

 

                x^6  - 4x^5  + 5x^4 - 4x^2 + 4

x^2 + 1  [ x^8- 4x^7 + 6x^6 - 4x^5 + x^4]

               x^8                x^6      

              _________________________

                      -4x^7  + 5x^6 - 4x^5  + x^4

                     -4x^7               -4x^5

                    _______________________

                                  5x^6               + x^4

                                  5x^6               + 5x^4

                                 __________________

                                                         -4x^4

                                                         -4x^4   - 4x^2

                                                        ___________

                                                                       4x^2   

                                                                       4x^2 + 4

                                                                      _______

                                                                              -4

 

So......we have

 

1

∫     x^6  - 4x^5  + 5x^4 - 4x^2 + 4 - 4 / [ x^2 + 1]   dx      = 

0

 

          1                      1             1                   1          1                       1

x^7/7 ]      -  (2/3)x^6 ]    +  x^5 ]     - (4/3)x^3 ]  + 4x ]    -  4arctan(x) ]           =

         0                        0             0                  0         0                        0

 

(1/7)  -         (2/3)        +     1           -   (4/3)        +    4     -   4arctan(1)   =

 

22/7     -  4  [pi / 4]  =

 

22/7  - pi    ≈  0.0013

 

 

 

cool cool cool

CPhill  Mar 30, 2017
 #3
avatar+91226 
+1

Chris I do not think your answer is correct either becasue Wolfram Alpha says the answer is approx 0.0023

 

https://www.wolframalpha.com/input/?i=integral+of+((x%5E4(1-x)%5E4)%2F(1-x%5E2))dx+from+0+to+1

Melody  Mar 31, 2017
 #2
avatar+91226 
+1

 

Integrate: ∫x^4[1 - x]^4 / [1 + x^2]dx,from x=0 to 1

 

\(\displaystyle\int_0^1\;\frac{x^4(1-x)^4}{1-x^2}\;dx\\ =\displaystyle\int_0^1\;\frac{x^4(1-x)^4}{(1-x)(1+x)}\;dx\\ =-\displaystyle\int_0^1\;\frac{x^4(x-1)^3}{x+1}\;dx\\ =-\displaystyle\int_0^1\;\frac{x^4(x^3-3x^2+3x-1)}{x+1}\;dx\\ =-\displaystyle\int_0^1\;\frac{x^7-3x^6+3x^5-x^4}{x+1}\;dx\\ \text{Do the algebraic division}\\ =-\displaystyle\int_0^1\;x^6-4x^5+7x^4-6x^3+6x^2-6x+6-\frac{6}{x+1}\;dx\\ \)


 

\( =-\displaystyle\int_0^1\;x^6-4x^5+7x^4-6x^3+6x^2-6x+6-\frac{6}{x+1}\;dx\\ =-\left[\; \frac{x^7}{7}-\frac{4x^6}{6}+\frac{7x^5}{5}-\frac{6x^4}{4}+\frac{6x^3}{3}-\frac{6x^2}{2}+6x-6ln(x+1)\;\right]_0^1\\ =-\left[\; \frac{x^7}{7}-\frac{2x^6}{3}+\frac{7x^5}{5}-\frac{3x^4}{2}+2x^3-3x^2+6x-6ln(x+1)\;\right]_0^1\\ =-\left[\; \frac{1}{7}-\frac{2}{3}+\frac{7}{5}-\frac{3}{2}+2-3+6-6ln(2)\;\right]\\ =-\left[\; \frac{1}{7}-\frac{2}{3}+\frac{7}{5}-\frac{3}{2}+5-6ln(2)\;\right]\)

 

1/7-2/3+7/5-3/2+5 = 4.3761904761904762 = 919/210

 

\(=6ln2-\frac{919}{210}\)

 

-4.3761904761904762+6*log(2) = -2.570010502206589

 

This is not correct, I have made some silly mistake somewhere, but the method is correct :)

 

Wolfram Alpha says the answer is approx 0.0023

Melody  Mar 31, 2017
 #4
avatar+5552 
+3

I think the problem is 1 + x2 in the denominator, but you had put 1 - x2  surprise...

hectictar  Mar 31, 2017
 #6
avatar+91226 
+1

Yes I see :)

Melody  Mar 31, 2017
 #5
avatar+79818 
+2

Mmmm.....WA  seems to get the same result that I have :

 

https://www.wolframalpha.com/input/?i=x%5E4%5B1+-+x%5D%5E4+%2F+%5B1+%2B+x%5E2%5Ddx,from+x%3D0+to+1

 

 

 

cool cool cool

CPhill  Mar 31, 2017
 #7
avatar+91226 
+2

Appologies all around :)

Melody  Mar 31, 2017
 #8
avatar
0

Compute the definite integral:
 integral_0^1 ((1 - x)^4 x^4)/(x^2 + 1) dx
For the integrand ((1 - x)^4 x^4)/(x^2 + 1), cancel common terms in the numerator and denominator:
 = integral_0^1 ((x - 1)^4 x^4)/(x^2 + 1) dx
For the integrand ((x - 1)^4 x^4)/(x^2 + 1), do long division:
 = integral_0^1 (x^6 - 4 x^5 + 5 x^4 - 4 x^2 - 4/(x^2 + 1) + 4) dx
Integrate the sum term by term and factor out constants:
 = -4 integral_0^1 1/(x^2 + 1) dx + integral_0^1 x^6 dx - 4 integral_0^1 x^5 dx + 5 integral_0^1 x^4 dx - 4 integral_0^1 x^2 dx + 4 integral_0^1 1 dx
Apply the fundamental theorem of calculus.
The antiderivative of 1/(x^2 + 1) is tan^(-1)(x):
 = (-4 tan^(-1)(x)) right bracketing bar _0^1 + integral_0^1 x^6 dx - 4 integral_0^1 x^5 dx + 5 integral_0^1 x^4 dx - 4 integral_0^1 x^2 dx + 4 integral_0^1 1 dx
Evaluate the antiderivative at the limits and subtract.
 (-4 tan^(-1)(x)) right bracketing bar _0^1 = (-4 tan^(-1)(1)) - (-4 tan^(-1)(0)) = -π:
 = -π + integral_0^1 x^6 dx - 4 integral_0^1 x^5 dx + 5 integral_0^1 x^4 dx - 4 integral_0^1 x^2 dx + 4 integral_0^1 1 dx
Apply the fundamental theorem of calculus.
The antiderivative of x^6 is x^7/7:
 = -π + x^7/7 right bracketing bar _0^1 - 4 integral_0^1 x^5 dx + 5 integral_0^1 x^4 dx - 4 integral_0^1 x^2 dx + 4 integral_0^1 1 dx
Evaluate the antiderivative at the limits and subtract.
 x^7/7 right bracketing bar _0^1 = 1^7/7 - 0^7/7 = 1/7:
 = 1/7 - π - 4 integral_0^1 x^5 dx + 5 integral_0^1 x^4 dx - 4 integral_0^1 x^2 dx + 4 integral_0^1 1 dx
Apply the fundamental theorem of calculus.
The antiderivative of x^5 is x^6/6:
 = 1/7 - π + (-(2 x^6)/3) right bracketing bar _0^1 + 5 integral_0^1 x^4 dx - 4 integral_0^1 x^2 dx + 4 integral_0^1 1 dx
Evaluate the antiderivative at the limits and subtract.
 (-(2 x^6)/3) right bracketing bar _0^1 = (-(2 1^6)/3) - (-(2 0^6)/3) = -2/3:
 = -11/21 - π + 5 integral_0^1 x^4 dx - 4 integral_0^1 x^2 dx + 4 integral_0^1 1 dx
Apply the fundamental theorem of calculus.
The antiderivative of x^4 is x^5/5:
 = -11/21 - π + x^5 right bracketing bar _0^1 - 4 integral_0^1 x^2 dx + 4 integral_0^1 1 dx
Evaluate the antiderivative at the limits and subtract.
 x^5 right bracketing bar _0^1 = 1^5 - 0^5 = 1:
 = 10/21 - π - 4 integral_0^1 x^2 dx + 4 integral_0^1 1 dx
Apply the fundamental theorem of calculus.
The antiderivative of x^2 is x^3/3:
 = 10/21 - π + (-(4 x^3)/3) right bracketing bar _0^1 + 4 integral_0^1 1 dx
Evaluate the antiderivative at the limits and subtract.
 (-(4 x^3)/3) right bracketing bar _0^1 = (-(4 1^3)/3) - (-(4 0^3)/3) = -4/3:
 = -6/7 - π + 4 integral_0^1 1 dx
Apply the fundamental theorem of calculus.
The antiderivative of 1 is x:
 = -6/7 - π + 4 x right bracketing bar _0^1
Evaluate the antiderivative at the limits and subtract.
 4 x right bracketing bar _0^1 = 4 1 - 4 0 = 4:
Answer: |= 22/7 - π
 

Guest Mar 31, 2017

23 Online Users

avatar
We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  See details