+0

# Arithmetic Sequence Problem Set

0
395
3
+251

1. A certain 300-term geometric sequence has first term 1337 and common ratio -1/2. How many terms of this sequence are greater than 1?

2. Let a_1, a_2, . . . ,a_10 be an arithmetic sequence. If a_1 + a_3 + a_5 + a_7 + a_9 = 17 and a_2 + a_4 + a_6 + a_8 + a_{10} = 15, then find a_1.

3. Consider this pattern where the positive, proper fractions with denominator (n+1) are arranged in the nth row in a triangular formation. The 1st through 4th rows are shown; each row has one more entry than the previous row. What is the sum of the fractions in the 15th row?

higgsb  Sep 20, 2016

### Best Answer

#2
+17705
+10

1)  First term  =  1337  and the common ratio is  -1/2:

Terms are:  1337,  -668.5,  334.25,  -167.125,  83.5625,  -41.78125,  20.890625,  -10.4453125,  5.22265625,

-2.611328125,  1.3056640625, -0.65283203125

and all the remaining terms are smaller than 1.

So, to find the answer, add the positive terms in the list above.

2)  a1 + a3 + a5 + a7 + a9  =  17

--->     a1 + (a1​ + 2d) + (a1​ + 4d) + (a1​ + 6d) + (a1​ + 8d)  =  17

--->     5a1 + 20d  =  17

a2 + a4 + a6 + a8 + a10  =  15

--->   (a1 + d) + (a1​ + 3d) + (a1​ + 5d) + (a1​ + 7d) + (a1​ + 9d)  =  15

--->     5a1 + 25d  =  15

Combining these answers:          5a1 + 20d  =  17

5a1 + 25d  =  15

Subtracting down:                                 -5d  =  2

d  =  -2/5

Since  5a1 + 20d  =  17     --->     5a1 + 20(-2/5)  =  17

--->     5a1 - 8 =  17

--->     5a1 =  25

--->        a1 =  5

geno3141  Sep 20, 2016
Sort:

### 3+0 Answers

#1
0

Ok so for the first question it is simple because all you have to do is crunch the number which can be simplified which will equal 83 terms that are 1

Guest Sep 20, 2016
#2
+17705
+10
Best Answer

1)  First term  =  1337  and the common ratio is  -1/2:

Terms are:  1337,  -668.5,  334.25,  -167.125,  83.5625,  -41.78125,  20.890625,  -10.4453125,  5.22265625,

-2.611328125,  1.3056640625, -0.65283203125

and all the remaining terms are smaller than 1.

So, to find the answer, add the positive terms in the list above.

2)  a1 + a3 + a5 + a7 + a9  =  17

--->     a1 + (a1​ + 2d) + (a1​ + 4d) + (a1​ + 6d) + (a1​ + 8d)  =  17

--->     5a1 + 20d  =  17

a2 + a4 + a6 + a8 + a10  =  15

--->   (a1 + d) + (a1​ + 3d) + (a1​ + 5d) + (a1​ + 7d) + (a1​ + 9d)  =  15

--->     5a1 + 25d  =  15

Combining these answers:          5a1 + 20d  =  17

5a1 + 25d  =  15

Subtracting down:                                 -5d  =  2

d  =  -2/5

Since  5a1 + 20d  =  17     --->     5a1 + 20(-2/5)  =  17

--->     5a1 - 8 =  17

--->     5a1 =  25

--->        a1 =  5

geno3141  Sep 20, 2016
#3
0

If you keep on mltiplying by -.5, you will eventually get to 6 POSITIVE ones that actually count.

Guest Feb 20, 2017

### 20 Online Users

We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  See details