+0  
 
0
582
4
avatar

A GPS satellite develops a fault whereby it moves into an orbit 19 800 km above the Earth’s surface and also emits a weak signal whose power is only 20 W. What will be the power per square metre of the signal received on the Earth’s surface? 

physics
Guest Nov 11, 2015
edited by Guest  Nov 11, 2015

Best Answer 

 #3
avatar+18712 
+15

A GPS satellite develops a fault whereby it moves into an orbit 19 800 km above the Earth’s surface and also emits a weak signal whose power is only 20 W. What will be the power per square metre of the signal received on the Earth’s surface? 

 


\(\begin{array}{rcl} I &=& \frac{P}{4\cdot \pi\cdot r^2} \qquad P = 20\ \text{watt} \qquad r = 19\ 800\ 000\ m\\ I &=& \frac{20}{4\cdot \pi\cdot 19800000^2} \\ I &=& \frac{20}{4\cdot \pi\cdot 19800000^2} \\ I &=& 4.0596608278\cdot10^{-15}\ \frac{W}{m^2}\\ \end{array}\)


laugh

heureka  Nov 11, 2015
Sort: 

4+0 Answers

 #1
avatar+26328 
+15

If it emits the power equally in all directions then by the time it reaches the Earth it will be spread out over the surface of a sphere of radius 19800 km.  The surface area of this is 4*pi*(1.98*10^7)^2 m^2.  Divide the 20W by this area to get the power in Watts per square metre (it will be a very small number!).

Alan  Nov 11, 2015
 #2
avatar
0

Hi Many thanks for you reply , I forgot to add: 

Choose the nearest value from the list below. (W/m2 represents ‘watts per square metre’.)

Select one:

8 × 10−5 W/m2

8 × 10−8 W/m2

4 × 10−15 W/m2

2 × 10−16 W/m2

4 × 10−17 W/m2

4 × 10−9 W/m2

2 × 10−4 W/m2

Guest Nov 11, 2015
 #3
avatar+18712 
+15
Best Answer

A GPS satellite develops a fault whereby it moves into an orbit 19 800 km above the Earth’s surface and also emits a weak signal whose power is only 20 W. What will be the power per square metre of the signal received on the Earth’s surface? 

 


\(\begin{array}{rcl} I &=& \frac{P}{4\cdot \pi\cdot r^2} \qquad P = 20\ \text{watt} \qquad r = 19\ 800\ 000\ m\\ I &=& \frac{20}{4\cdot \pi\cdot 19800000^2} \\ I &=& \frac{20}{4\cdot \pi\cdot 19800000^2} \\ I &=& 4.0596608278\cdot10^{-15}\ \frac{W}{m^2}\\ \end{array}\)


laugh

heureka  Nov 11, 2015
 #4
avatar
0

sorry I forgot to add the following for the above post.

 

Select one:

4 × 10−15 W/m2

4 × 10−9 W/m2

8 × 10−5 W/m2

4 × 10−17 W/m2

2 × 10−16 W/m2

2 × 10−4 W/m2

8 × 10−8 W/m2

Guest Dec 8, 2015

15 Online Users

avatar
avatar
avatar
We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  See details