Integrate: dx/sqrt[1 - x^2], for all x from -1 to 1. Please help and thanks.
Integrate: dx/sqrt[1 - x^2], for all x from -1 to 1.
1∫−11√1−x2 dxSubstitution : x=sin(u)→u=arcsin(x) dx=cos(u) du1∫−11√1−x2 dx=1∫−11√1−sin2(u) dx=1∫−11√1−sin2(u) dx|1−sin2(u)=cos2(u)=1∫−11√cos2(u) dx=1∫−11cos(u) dx=1∫−11cos(u) dx|dx=cos(u) du=1∫−11cos(u)⋅cos(u) du=1∫−1 du=[u]1−1|u=arcsin(x)1∫−11√1−x2 dx=[ arcsin(x) ]1−11∫−11√1−x2 dx=[ arcsin(x) ]1−1=[ arcsin(1)−arcsin(−1) ]=[ π2−−π2 ]=[ π2+π2 ]=π1∫−11√1−x2 dx=π1∫−11√1−x2 dx=3.14159265359
Compute the definite integral:
integral_(-1)^1 1/sqrt(1-x^2) dx
1/sqrt(1-x^2) has discontinuities at x = -1 and x = 1, which both produce improper bounds:
= integral_(-1)^1 1/sqrt(1-x^2) dx
Since 1/sqrt(1-x^2) is an even function and the interval [-1, 1] is symmetric about 0, integral_(-1)^1 1/sqrt(1-x^2) dx = 2 integral_0^1 1/sqrt(1-x^2) dx. Applying this identity will reduce the number of improper endpoints on the integration domain:
= 2 integral_0^1 1/sqrt(1-x^2) dx
Apply the fundamental theorem of calculus.
The antiderivative of 1/sqrt(1-x^2) is sin^(-1)(x):
= lim_(b->1^-) 2 sin^(-1)(x)|_0^b
Evaluate the antiderivative at the limits and subtract.
lim_(b->1^-) 2 sin^(-1)(x)|_0^b = (lim_(b->1^-) 2 sin^(-1)(b))-2 sin^(-1)(0) = (lim_(b->1^-) 2 sin^(-1)(b))-0:
= (lim_(b->1^-) 2 sin^(-1)(b))
lim_(b->1^-) 2 sin^(-1)(b) = pi:
Answer: |= pi
Integrate: dx/sqrt[1 - x^2], for all x from -1 to 1.
1∫−11√1−x2 dxSubstitution : x=sin(u)→u=arcsin(x) dx=cos(u) du1∫−11√1−x2 dx=1∫−11√1−sin2(u) dx=1∫−11√1−sin2(u) dx|1−sin2(u)=cos2(u)=1∫−11√cos2(u) dx=1∫−11cos(u) dx=1∫−11cos(u) dx|dx=cos(u) du=1∫−11cos(u)⋅cos(u) du=1∫−1 du=[u]1−1|u=arcsin(x)1∫−11√1−x2 dx=[ arcsin(x) ]1−11∫−11√1−x2 dx=[ arcsin(x) ]1−1=[ arcsin(1)−arcsin(−1) ]=[ π2−−π2 ]=[ π2+π2 ]=π1∫−11√1−x2 dx=π1∫−11√1−x2 dx=3.14159265359
Integrate: dx/sqrt[1 - x^2], for all x from -1 to 1. Please help and thanks.
My answer is the same as Heureka's, I just like to start it a little different.
∫1−11√1−x2dx
I like to start with this little triangle it wasn't meant to be that big.
cosθ=√1−x2 sinθ=xx=sinθdxdθ=cosθdx=cosθdθ Whenx=1,sinθ=1→θ=π2Whenx=−1,sinθ=−1→θ=−π2SO
∫1−11√1−x2dx =∫π2−π21cosθcosθdθ =∫π2−π21dθ =[θ]π2−π2 =π2−−π2 =π