Loading [MathJax]/jax/output/SVG/jax.js
 
+0  
 
0
1274
4
avatar

Integrate: dx/sqrt[1 - x^2], for all x from -1 to 1. Please help and thanks.

 Feb 14, 2016

Best Answer 

 #3
avatar+26396 
+10

Integrate: dx/sqrt[1 - x^2], for all x from -1 to 1.

 

1111x2 dxSubstitution : x=sin(u)u=arcsin(x) dx=cos(u) du1111x2 dx=1111sin2(u) dx=1111sin2(u) dx|1sin2(u)=cos2(u)=111cos2(u) dx=111cos(u) dx=111cos(u) dx|dx=cos(u) du=111cos(u)cos(u) du=11 du=[u]11|u=arcsin(x)1111x2 dx=[ arcsin(x) ]111111x2 dx=[ arcsin(x) ]11=[ arcsin(1)arcsin(1) ]=[ π2π2 ]=[ π2+π2 ]=π1111x2 dx=π1111x2 dx=3.14159265359

laugh

 Feb 15, 2016
 #1
avatar
+5

Compute the definite integral:

integral_(-1)^1 1/sqrt(1-x^2) dx

1/sqrt(1-x^2) has discontinuities at x = -1 and x = 1, which both produce improper bounds:

= integral_(-1)^1 1/sqrt(1-x^2) dx

Since 1/sqrt(1-x^2) is an even function and the interval [-1, 1] is symmetric about 0, integral_(-1)^1 1/sqrt(1-x^2) dx = 2 integral_0^1 1/sqrt(1-x^2) dx. Applying this identity will reduce the number of improper endpoints on the integration domain:

= 2 integral_0^1 1/sqrt(1-x^2) dx

Apply the fundamental theorem of calculus.

The antiderivative of 1/sqrt(1-x^2) is sin^(-1)(x):

= lim_(b->1^-) 2 sin^(-1)(x)|_0^b

Evaluate the antiderivative at the limits and subtract.

lim_(b->1^-) 2 sin^(-1)(x)|_0^b = (lim_(b->1^-) 2 sin^(-1)(b))-2 sin^(-1)(0) = (lim_(b->1^-) 2 sin^(-1)(b))-0:

= (lim_(b->1^-) 2 sin^(-1)(b))

lim_(b->1^-) 2 sin^(-1)(b) = pi:

Answer: |= pi

 Feb 14, 2016
 #2
avatar+130466 
0
 Feb 14, 2016
edited by CPhill  Feb 14, 2016
 #3
avatar+26396 
+10
Best Answer

Integrate: dx/sqrt[1 - x^2], for all x from -1 to 1.

 

1111x2 dxSubstitution : x=sin(u)u=arcsin(x) dx=cos(u) du1111x2 dx=1111sin2(u) dx=1111sin2(u) dx|1sin2(u)=cos2(u)=111cos2(u) dx=111cos(u) dx=111cos(u) dx|dx=cos(u) du=111cos(u)cos(u) du=11 du=[u]11|u=arcsin(x)1111x2 dx=[ arcsin(x) ]111111x2 dx=[ arcsin(x) ]11=[ arcsin(1)arcsin(1) ]=[ π2π2 ]=[ π2+π2 ]=π1111x2 dx=π1111x2 dx=3.14159265359

laugh

heureka Feb 15, 2016
 #4
avatar+118696 
+5

Integrate: dx/sqrt[1 - x^2], for all x from -1 to 1. Please help and thanks.

 

My answer is the same as Heureka's, I just like to start it a little different.

 

1111x2dx

 

I like to start with this little triangle  it wasn't meant to be that big.   surprise

 

cosθ=1x2 sinθ=xx=sinθdxdθ=cosθdx=cosθdθ Whenx=1,sinθ=1θ=π2Whenx=1,sinθ=1θ=π2SO

 

1111x2dx =π2π21cosθcosθdθ =π2π21dθ =[θ]π2π2 =π2π2 =π

 Feb 17, 2016

3 Online Users

avatar