Loading [MathJax]/jax/output/SVG/jax.js
 
+0  
 
0
1260
4
avatar

Please help with this: (5 - 3i)^1/3. Calculate as many forms as possible. I thank you.

advanced
 Dec 21, 2015

Best Answer 

 #4
avatar+118696 
+5

 (5 - 3i)^1/3.

 

r=modz=|z|=52+(3)2=34

 

53i=34(5343i34)4thquadargumentofz=arg(z)=θ=2πacos(534)θ5.7427658radians53i=34e5.7427658i
 

 

|z1/3|=341/3=634

 

1)arg(z1/3)=5.7427658/3=1.9142552)arg(z1/3)=1.914255+2π3=4.0086503)arg(z1/3)=1.914255+22π3=6.103045

 

So the 3 cubed roots of are 5-3i  are

634e1.914255iand634e4.008650iand634e6.103045i

 

cos(1.914255) = -0.336745771286

sin(1.914255) = 0.94159560615

1stroot=634(0.336746+0.941596i)

etc

check the first root

(34^(1/6)*e^(1.914255*i))^3 = 4.9999975792700509-3.0000040345460377i      Near enough    laugh

 

 

 

 Dec 25, 2015
 #2
avatar
+5

z = (5 - 3i)^(1/3)

Algebraic form:
z = 1.7707675-0.3224815i

Exponential form:
z = 1.7998922 × ei (-10°19'16″)

Trigonometric form:
z = 1.7998922 × (cos (-10°19'16″) + i sin (-10°19'16″))

Polar form:
r = |z| = 1.79989
φ = arg z = -10.32125° = -10°19'16″ = -0.05734π
 

THIS IS THE ACCURATE SOLUTION. THE FIRST ANSWER CALCULATED (5-3i)^1*3

 Dec 22, 2015
 #3
avatar+118696 
0

Could you talk us through it please ?

 Dec 22, 2015
 #4
avatar+118696 
+5
Best Answer

 (5 - 3i)^1/3.

 

r=modz=|z|=52+(3)2=34

 

53i=34(5343i34)4thquadargumentofz=arg(z)=θ=2πacos(534)θ5.7427658radians53i=34e5.7427658i
 

 

|z1/3|=341/3=634

 

1)arg(z1/3)=5.7427658/3=1.9142552)arg(z1/3)=1.914255+2π3=4.0086503)arg(z1/3)=1.914255+22π3=6.103045

 

So the 3 cubed roots of are 5-3i  are

634e1.914255iand634e4.008650iand634e6.103045i

 

cos(1.914255) = -0.336745771286

sin(1.914255) = 0.94159560615

1stroot=634(0.336746+0.941596i)

etc

check the first root

(34^(1/6)*e^(1.914255*i))^3 = 4.9999975792700509-3.0000040345460377i      Near enough    laugh

 

 

 

Melody Dec 25, 2015

0 Online Users