Please help with this: (5 - 3i)^1/3. Calculate as many forms as possible. I thank you.
(5 - 3i)^1/3.
r=modz=|z|=√52+(−3)2=√34
5−3i=√34(5√34−3i√34)4thquadargumentofz=arg(z)=θ=2π−acos(5√34)θ≈5.7427658radians5−3i=√34e5.7427658i
|z1/3|=√341/3=6√34
1)arg(z1/3)=5.7427658/3=1.9142552)arg(z1/3)=1.914255+2π3=4.0086503)arg(z1/3)=1.914255+2∗2π3=6.103045
So the 3 cubed roots of are 5-3i are
6√34∗e1.914255iand6√34∗e4.008650iand6√34∗e6.103045i
cos(1.914255) = -0.336745771286
sin(1.914255) = 0.94159560615
1stroot=6√34(−0.336746+0.941596i)
etc
check the first root
(34^(1/6)*e^(1.914255*i))^3 = 4.9999975792700509-3.0000040345460377i Near enough
z = (5 - 3i)^(1/3)
Algebraic form:
z = 1.7707675-0.3224815i
Exponential form:
z = 1.7998922 × ei (-10°19'16″)
Trigonometric form:
z = 1.7998922 × (cos (-10°19'16″) + i sin (-10°19'16″))
Polar form:
r = |z| = 1.79989
φ = arg z = -10.32125° = -10°19'16″ = -0.05734π
THIS IS THE ACCURATE SOLUTION. THE FIRST ANSWER CALCULATED (5-3i)^1*3
(5 - 3i)^1/3.
r=modz=|z|=√52+(−3)2=√34
5−3i=√34(5√34−3i√34)4thquadargumentofz=arg(z)=θ=2π−acos(5√34)θ≈5.7427658radians5−3i=√34e5.7427658i
|z1/3|=√341/3=6√34
1)arg(z1/3)=5.7427658/3=1.9142552)arg(z1/3)=1.914255+2π3=4.0086503)arg(z1/3)=1.914255+2∗2π3=6.103045
So the 3 cubed roots of are 5-3i are
6√34∗e1.914255iand6√34∗e4.008650iand6√34∗e6.103045i
cos(1.914255) = -0.336745771286
sin(1.914255) = 0.94159560615
1stroot=6√34(−0.336746+0.941596i)
etc
check the first root
(34^(1/6)*e^(1.914255*i))^3 = 4.9999975792700509-3.0000040345460377i Near enough