Hi, can anyone solve this problem:
Determine z^n and all values of sqrts with base n of z.
z=(2-2i)^22 - (-1+isqrt(3))^33 , n=4
Why is this equality valid 2-2i = 2*sqrt(2)*e^-i*pi/4 = 2^3/2*e^-i*pi/4 ?
Determine z^n and all values of sqrts with base n of z.
z=(2-2i)^22 - (-1+isqrt(3))^33 , n=4
2−2i=2(1−i)=2√2(1√2+−i√2)=2√2(cos(−π4+isin−π4))=2√2ei∗−π4=23/2e−π/4
(2−2i)22=[23/2e−(π/4)i]22=233e−(22π/4)i=233e−(11π/2)i=233e(−11π/2+12π/2)iI added 3 revolutions=233e(π/2)i=233∗i
−(−1+i√3)33=−(−1)33(1−i√3)33=+(1−i√3)33=(√4)33(1−i√3√4)33=233(1−i√32)33=233[cos(−π/3)+isin((−π/3)i)]33=233[e−π/3∗i]33=233e−11π∗i=233e−11π∗i+12πi=233eπi
=233∗−1=−233
z=233i−233z=233(i−1)...zn=233n(i−1)n....z4=233∗4(i−1)4z4=2132(−1−2i+1)2z4=2132(−2i)2z4=2132∗(−4)z4=−2132∗22z4=−2134z4≈−2.1778×1040
(I did the second part first)
Why is this equality valid
2-2i = 2*sqrt(2)*e^-i*pi/4 = 2^3/2*e^-i*pi/4 ?
I will add some brackets here. You should have added the brackets yourself!
2-2i = 2*sqrt(2)*e^(-i*pi/4) = 2^(3/2)*e^(-i*pi/4) ? I assume that is what you want?
Firstly
23/2=21+1/2=21∗21/2=2√2
so 2*sqrt(2)*e^(-i*pi/4) = 2^3/2*e^(-i*pi/4)
Now to show that they are the same as the first part.
i.e. show that
2-2i = 2*sqrt(2)*e^(-i*pi/4)
RHS=2∗√2∗e(−i∗π/4)RHS=2∗√2∗e(−i∗π/4)RHS=2∗√2∗[cos(−π/4)+isin(−π/4)]RHS=2∗√2∗[1√2+i∗−1√2]RHS=2∗√2∗[1√2−i√2]RHS=2(1−i)RHS=2−2iRHS=LHS
z=(2-2i)^22 - (-1+isqrt(3))^33 , n=4 =-2.17780 × 10^40
Why is this equality valid 2-2i = 2*sqrt(2)*e^-i*pi/4 = 2^3/2*e^-i*pi/4 ?
This appears to be FALSE!.
Not sure what you are asking in the first part.
The equality is correct.
Remember that
eıθ=cosθ+ısinθ
and that
cos(−π/4)=1/√2,
sin(−π/4)=−1/√2.
Determine z^n and all values of sqrts with base n of z.
z=(2-2i)^22 - (-1+isqrt(3))^33 , n=4
2−2i=2(1−i)=2√2(1√2+−i√2)=2√2(cos(−π4+isin−π4))=2√2ei∗−π4=23/2e−π/4
(2−2i)22=[23/2e−(π/4)i]22=233e−(22π/4)i=233e−(11π/2)i=233e(−11π/2+12π/2)iI added 3 revolutions=233e(π/2)i=233∗i
−(−1+i√3)33=−(−1)33(1−i√3)33=+(1−i√3)33=(√4)33(1−i√3√4)33=233(1−i√32)33=233[cos(−π/3)+isin((−π/3)i)]33=233[e−π/3∗i]33=233e−11π∗i=233e−11π∗i+12πi=233eπi
=233∗−1=−233
z=233i−233z=233(i−1)...zn=233n(i−1)n....z4=233∗4(i−1)4z4=2132(−1−2i+1)2z4=2132(−2i)2z4=2132∗(−4)z4=−2132∗22z4=−2134z4≈−2.1778×1040
(I did the second part first)
Why is this equality valid
2-2i = 2*sqrt(2)*e^-i*pi/4 = 2^3/2*e^-i*pi/4 ?
I will add some brackets here. You should have added the brackets yourself!
2-2i = 2*sqrt(2)*e^(-i*pi/4) = 2^(3/2)*e^(-i*pi/4) ? I assume that is what you want?
Firstly
23/2=21+1/2=21∗21/2=2√2
so 2*sqrt(2)*e^(-i*pi/4) = 2^3/2*e^(-i*pi/4)
Now to show that they are the same as the first part.
i.e. show that
2-2i = 2*sqrt(2)*e^(-i*pi/4)
RHS=2∗√2∗e(−i∗π/4)RHS=2∗√2∗e(−i∗π/4)RHS=2∗√2∗[cos(−π/4)+isin(−π/4)]RHS=2∗√2∗[1√2+i∗−1√2]RHS=2∗√2∗[1√2−i√2]RHS=2(1−i)RHS=2−2iRHS=LHS