+0  
 
0
840
4
avatar

consider tossing a biased coin whose probability is of coming up heads is 0.3. if 40 trials are performed, what values of k would have probabilities closest to half the probability of the expected value of k

 Apr 2, 2015

Best Answer 

 #1
avatar+118609 
+10

consider tossing a biased coin whose probability is of coming up heads is 0.3. if 40 trials are performed, what values of k would have probabilities closest to half the probability of the expected value of k

By the expected value of k, I am going to assume that you mean the expected probability IF the the coin was not biased.

 

$$\begin{array}{rll}
2\times \binom{40}{k}(0.3)^k(0.7)^{(40-k)}&=&\binom{40}{k}(0.5)^k(0.5)^{(40-k)}\\\\
2\times (0.3)^k(0.7)^{(40-k)}&=&(0.5)^{40}\\\\
2\times \left(\frac{3}{10}\right)^k\left(\frac{7}{10}\right)^{(40-k)}&=&\left(\frac{1}{2}\right)^{40}\\\\
2\times \frac{3^k\times 7^{(40-k)}}{10^k\times {10^{(40-k)}}}&=&\frac{1}{2^{40}}\\\\
\frac{3^k\times 7^{40}}{10^{40}\times 7^k}&=&\frac{1}{2^{41}}\\\\
\frac{3^k}{ 7^k}&=&\frac{10^{40}}{2^{41}\times 7^{40}}\\\\
\left(\frac{3}{ 7}\right)^k&=&\frac{10^{40}}{2^{41}\times 7^{40}}\\\\
log\left[\left(\frac{3}{ 7}\right)^k\right]&=&log\left[\frac{10^{40}}{2^{41}\times 7^{40}}\right]\\\\
k\times log\left[\left(\frac{3}{ 7}\right)\right]&=&log\left[\frac{10^{40}}{2^{41}\times 7^{40}}\right]\\\\
k &=&\frac{log\left[\frac{10^{40}}{2^{41}\times 7^{40}}\right]}{log\left(\frac{3}{ 7}\right)}\\\\



\end{array}$$

 

$$\left({\frac{{log}_{10}\left({\frac{{{\mathtt{10}}}^{{\mathtt{40}}}}{\left({{\mathtt{2}}}^{{\mathtt{41}}}{\mathtt{\,\times\,}}{{\mathtt{7}}}^{{\mathtt{40}}}\right)}}\right)}{{log}_{10}\left({\frac{{\mathtt{3}}}{{\mathtt{7}}}}\right)}}\right) = {\mathtt{16.702\: \!552\: \!085\: \!923\: \!092\: \!1}}$$

 

The closest one is k=17

 Apr 2, 2015
 #1
avatar+118609 
+10
Best Answer

consider tossing a biased coin whose probability is of coming up heads is 0.3. if 40 trials are performed, what values of k would have probabilities closest to half the probability of the expected value of k

By the expected value of k, I am going to assume that you mean the expected probability IF the the coin was not biased.

 

$$\begin{array}{rll}
2\times \binom{40}{k}(0.3)^k(0.7)^{(40-k)}&=&\binom{40}{k}(0.5)^k(0.5)^{(40-k)}\\\\
2\times (0.3)^k(0.7)^{(40-k)}&=&(0.5)^{40}\\\\
2\times \left(\frac{3}{10}\right)^k\left(\frac{7}{10}\right)^{(40-k)}&=&\left(\frac{1}{2}\right)^{40}\\\\
2\times \frac{3^k\times 7^{(40-k)}}{10^k\times {10^{(40-k)}}}&=&\frac{1}{2^{40}}\\\\
\frac{3^k\times 7^{40}}{10^{40}\times 7^k}&=&\frac{1}{2^{41}}\\\\
\frac{3^k}{ 7^k}&=&\frac{10^{40}}{2^{41}\times 7^{40}}\\\\
\left(\frac{3}{ 7}\right)^k&=&\frac{10^{40}}{2^{41}\times 7^{40}}\\\\
log\left[\left(\frac{3}{ 7}\right)^k\right]&=&log\left[\frac{10^{40}}{2^{41}\times 7^{40}}\right]\\\\
k\times log\left[\left(\frac{3}{ 7}\right)\right]&=&log\left[\frac{10^{40}}{2^{41}\times 7^{40}}\right]\\\\
k &=&\frac{log\left[\frac{10^{40}}{2^{41}\times 7^{40}}\right]}{log\left(\frac{3}{ 7}\right)}\\\\



\end{array}$$

 

$$\left({\frac{{log}_{10}\left({\frac{{{\mathtt{10}}}^{{\mathtt{40}}}}{\left({{\mathtt{2}}}^{{\mathtt{41}}}{\mathtt{\,\times\,}}{{\mathtt{7}}}^{{\mathtt{40}}}\right)}}\right)}{{log}_{10}\left({\frac{{\mathtt{3}}}{{\mathtt{7}}}}\right)}}\right) = {\mathtt{16.702\: \!552\: \!085\: \!923\: \!092\: \!1}}$$

 

The closest one is k=17

Melody Apr 2, 2015
 #2
avatar+128475 
0

Hey, Melody....a brief question......what was the motivation for multiplying by "2" on the left hand side in the top equation ???

Go slow with that explanation......you know me and "counting" problems....LOL!!!!

 

  

 Apr 2, 2015
 #3
avatar+128475 
+5

Nevermind.....I see  it.....(1/2) of the expected probability of a "normal" coin = 2 x the probability of our "biased" coin....

 BTW....nice answer....!!!

  

 Apr 2, 2015
 #4
avatar+118609 
0

Thanks Chris.  :)

 Apr 3, 2015

1 Online Users

avatar