+0

# cos 2x / cos^2(x) * sin^2(x) (integrals) I want to know how to solve it

0
603
3

cos 2x / cos^2(x) * sin^2(x) (integrals) I want to know how to solve it

Guest Jan 18, 2016

#2
+18829
+41

cos 2x / cos^2(x) * sin^2(x) (integrals) I want to know how to solve it

$$\small{ \begin{array}{rcll} \frac{ \cos{( 2x )} \cdot \sin^2{(x)} } { \cos^2{(x)} } &=& \frac{ \cos{( 2x )} \cdot [ 1-\cos^2{(x)} ] } { \cos^2{(x)} } \qquad &| \qquad \sin^2{(x)} = 1-\cos^2{(x)} \\ &=& \cos{( 2x )} \cdot \left[ \frac{1-\cos^2{(x)}} {\cos^2{(x)}} \right] \\ &=& \cos{( 2x )} \cdot \left[ \frac{1}{\cos^2{(x)}} -1 \right] \\ &=& \frac{\cos{( 2x )} }{\cos^2{(x)}} -\cos{( 2x )} \qquad &| \qquad \cos{( 2x )} = \cos^2{(x)}- \sin^2{(x)}\\ &=& \frac{ \cos^2{(x)}- \sin^2{(x)} }{\cos^2{(x)}} -\cos{( 2x )} \\ &=& 1- \frac{\sin^2{(x)} }{\cos^2{(x)}} -\cos{( 2x )} \\ &=& 1- \frac{ 1-\cos^2{(x)} }{\cos^2{(x)}} -\cos{( 2x )} \\ &=& 1- \left[ \frac{ 1 } {\cos^2{(x)} }-1 \right] -\cos{( 2x )} \\ &=& 2- \frac{ 1 } {\cos^2{(x)} } -\cos{( 2x )} \\ \end{array} }$$

$$\begin{array}{rcll} \int \frac{ \cos{( 2x )} \cdot \sin^2{(x)} } { \cos^2{(x)} } &=& \int 2\ dx -\int \frac{ 1 } {\cos^2{(x)} }\ dx -\int \cos{( 2x )}\ dx \\ \end{array}$$

$$\begin{array}{rcll} \text{1.} \qquad \int 2\ dx &=& 2\int dx \\ \int 2\ dx &=& 2x \end{array}$$

$$\begin{array}{rcll} \text{2.} \qquad \int \frac{ 1 } {\cos^2{(x)} }\ dx &=& \int \frac{ \sin^2{(x)}+\cos^2{(x)} }{\cos^2{(x)}} \ dx \\ &=& \int (\tan^2{(x)} + 1 )\ dx\\ && \boxed{~ \begin{array}{rcll} \text{we need: } y &=& \tan{(x)} \\ y &=& \frac{\sin{(x)}} {\cos{(x)}} \\ y' &=& \frac{\sin{(x)}} {\cos{(x)}} \left[ \frac{\cos{(x)}} {\sin{(x)}} - \frac{-\sin{(x)}}{\cos{(x)}} \right] \\ y' &=& \tan{(x)} \left[ \cot{(x)} + \tan{(x)} \right] \\ y' &=& 1+ \tan^2{(x)} \\ \end{array} ~}\\ &=& \int (\tan^2{(x)} + 1 )\ dx \\ \text{we substitute:} ~ u &=& \tan{(x)}\\ du &=&\left( 1+\tan^2{(x)} \right)\ dx\\ &=& \int (\tan^2{(x)} + 1 ) \frac{du}{1+\tan^2{(x)}} \\ &=& \int du\\ &=& u\\ \int \frac{ 1 } {\cos^2{(x)} }\ dx &=& \tan{(x)}\\ \end{array}$$

$$\begin{array}{rcll} \text{3.} \qquad \int \cos{( 2x )}\ dx \\ \text{we substitute:} ~ u &=& 2x\\ du &=&2\ dx\\ \int \cos{( 2x )}\ dx &=& \int \cos{( u )} \frac{du}{2} \\ &=& \frac12 \cdot \int \cos{( u )} \ du \\ &=& \frac12 \cdot \sin{( u )} \\ &=& \frac12 \cdot \sin{( 2x )} \qquad &| \qquad \sin{( 2x )} = 2\cdot \sin{( 2x )}\cdot \cos{( x )} \\ &=& \frac12 \cdot 2\cdot \sin{( 2x )}\cdot \cos{( x )} \\ \int \cos{( 2x )}\ dx &=& \sin{( x )}\cdot \cos{( x )} \\ \end{array}$$

$$\begin{array}{rcll} \int \frac{ \cos{( 2x )} \cdot \sin^2{(x)} } { \cos^2{(x)} } &=& \int 2\ dx -\int \frac{ 1 } {\cos^2{(x)} }\ dx -\int \cos{( 2x )}\ dx \\\\ \int \frac{ \cos{( 2x )} \cdot \sin^2{(x)} } { \cos^2{(x)} } &=& 2x - \tan{(x)}-\sin{( x )}\cdot \cos{( x )} + c \end{array}$$

heureka  Jan 18, 2016
Sort:

#1
+15

Take the integral:
integral cos(2 x) tan^2(x) dx
For the integrand cos(2 x) tan^2(x), substitute u = tan(x) and  du = sec^2(x)  dx:
=   integral (u^2 cos(2 tan^(-1)(u)))/(u^2+1) du
Write (u^2 cos(2 tan^(-1)(u)))/(u^2+1) as u^2/(u^2+1)^2-u^4/(u^2+1)^2:
=   integral (u^2/(u^2+1)^2-u^4/(u^2+1)^2) du
Integrate the sum term by term and factor out constants:
=  - integral u^4/(u^2+1)^2 du+ integral u^2/(u^2+1)^2 du
For the integrand u^4/(u^2+1)^2, do long division:
=  - integral (-2/(u^2+1)+1/(u^2+1)^2+1) du+ integral u^2/(u^2+1)^2 du
Integrate the sum term by term and factor out constants:
=  2 integral 1/(u^2+1) du- integral 1/(u^2+1)^2 du- integral 1 du+ integral u^2/(u^2+1)^2 du
The integral of 1/(u^2+1) is tan^(-1)(u):
=  2 tan^(-1)(u)- integral 1/(u^2+1)^2 du- integral 1 du+ integral u^2/(u^2+1)^2 du
For the integrand 1/(u^2+1)^2, substitute u = tan(s) and  du = sec^2(s)  ds. Then (u^2+1)^2  =  (tan^2(s)+1)^2  =  sec^4(s) and s = tan^(-1)(u):
=  2 tan^(-1)(u)- integral cos^2(s) ds- integral 1 du+ integral u^2/(u^2+1)^2 du
Write cos^2(s) as 1/2 cos(2 s)+1/2:
=  2 tan^(-1)(u)- integral (1/2 cos(2 s)+1/2) ds- integral 1 du+ integral u^2/(u^2+1)^2 du
Integrate the sum term by term and factor out constants:
=  2 tan^(-1)(u)-1/2 integral cos(2 s) ds-1/2 integral 1 ds- integral 1 du+ integral u^2/(u^2+1)^2 du
For the integrand cos(2 s), substitute p = 2 s and  dp = 2  ds:
=  2 tan^(-1)(u)-1/4 integral cos(p) dp-1/2 integral 1 ds- integral 1 du+ integral u^2/(u^2+1)^2 du
The integral of cos(p) is sin(p):
=  2 tan^(-1)(u)-(sin(p))/4-1/2 integral 1 ds- integral 1 du+ integral u^2/(u^2+1)^2 du
The integral of 1 is s:
=  -s/2+2 tan^(-1)(u)-(sin(p))/4- integral 1 du+ integral u^2/(u^2+1)^2 du
The integral of 1 is u:
=  -s/2-u+2 tan^(-1)(u)-(sin(p))/4+ integral u^2/(u^2+1)^2 du
For the integrand u^2/(u^2+1)^2, use partial fractions:
=  -s/2-u+2 tan^(-1)(u)-(sin(p))/4+ integral (1/(u^2+1)-1/(u^2+1)^2) du
Integrate the sum term by term and factor out constants:
=  -s/2-u+2 tan^(-1)(u)-(sin(p))/4+ integral 1/(u^2+1) du- integral 1/(u^2+1)^2 du
The integral of 1/(u^2+1) is tan^(-1)(u):
=  -s/2-u+3 tan^(-1)(u)-(sin(p))/4- integral 1/(u^2+1)^2 du
For the integrand 1/(u^2+1)^2, substitute u = tan(w) and  du = sec^2(w)  dw. Then (u^2+1)^2  =  (tan^2(w)+1)^2  =  sec^4(w) and w = tan^(-1)(u):
=  -s/2-u+3 tan^(-1)(u)-(sin(p))/4- integral cos^2(w) dw
Write cos^2(w) as 1/2 cos(2 w)+1/2:
=  -s/2-u+3 tan^(-1)(u)-(sin(p))/4- integral (1/2 cos(2 w)+1/2) dw
Integrate the sum term by term and factor out constants:
=  -s/2-u+3 tan^(-1)(u)-(sin(p))/4-1/2 integral cos(2 w) dw-1/2 integral 1 dw
For the integrand cos(2 w), substitute v = 2 w and  dv = 2  dw:
=  -s/2-u+3 tan^(-1)(u)-(sin(p))/4-1/4 integral cos(v) dv-1/2 integral 1 dw
The integral of cos(v) is sin(v):
=  -s/2-u+3 tan^(-1)(u)-(sin(p))/4-(sin(v))/4-1/2 integral 1 dw
The integral of 1 is w:
=  -(sin(p))/4-s/2-u+3 tan^(-1)(u)-(sin(v))/4-w/2+constant
Substitute back for v = 2 w:
=  -(sin(p))/4-s/2-u+3 tan^(-1)(u)-w/2-1/4 sin(2 w)+constant
Substitute back for w = tan^(-1)(u):
=  (-1/4 (u^2+1) (sin(p)+2 s+4 u-10 tan^(-1)(u))-u/2)/(u^2+1)+constant
Substitute back for p = 2 s:
=  (-1/2 (u^2+1) (s+sin(s) cos(s)+2 u-5 tan^(-1)(u))-u/2)/(u^2+1)+constant
Substitute back for s = tan^(-1)(u):
=  (-1/2 (u^2+1) (2 u-4 tan^(-1)(u)+sin(tan^(-1)(u)) cos(tan^(-1)(u)))-u/2)/(u^2+1)+constant
Simplify using cos(tan^(-1)(z)) = 1/sqrt(z^2+1) and sin(tan^(-1)(z)) = z/sqrt(z^2+1):
=  (2 (u^2+1) tan^(-1)(u)-u (u^2+2))/(u^2+1)+constant
Substitute back for u = tan(x):
=  -1/4 sec(x) (5 sin(x)+sin(3 x)-8 cos(x) tan^(-1)(tan(x)))+constant
Which is equivalent for restricted x values to:
Answer: | =  2 x-tan(x)-sin(x) cos(x)+constant

Guest Jan 18, 2016
#2
+18829
+41

cos 2x / cos^2(x) * sin^2(x) (integrals) I want to know how to solve it

$$\small{ \begin{array}{rcll} \frac{ \cos{( 2x )} \cdot \sin^2{(x)} } { \cos^2{(x)} } &=& \frac{ \cos{( 2x )} \cdot [ 1-\cos^2{(x)} ] } { \cos^2{(x)} } \qquad &| \qquad \sin^2{(x)} = 1-\cos^2{(x)} \\ &=& \cos{( 2x )} \cdot \left[ \frac{1-\cos^2{(x)}} {\cos^2{(x)}} \right] \\ &=& \cos{( 2x )} \cdot \left[ \frac{1}{\cos^2{(x)}} -1 \right] \\ &=& \frac{\cos{( 2x )} }{\cos^2{(x)}} -\cos{( 2x )} \qquad &| \qquad \cos{( 2x )} = \cos^2{(x)}- \sin^2{(x)}\\ &=& \frac{ \cos^2{(x)}- \sin^2{(x)} }{\cos^2{(x)}} -\cos{( 2x )} \\ &=& 1- \frac{\sin^2{(x)} }{\cos^2{(x)}} -\cos{( 2x )} \\ &=& 1- \frac{ 1-\cos^2{(x)} }{\cos^2{(x)}} -\cos{( 2x )} \\ &=& 1- \left[ \frac{ 1 } {\cos^2{(x)} }-1 \right] -\cos{( 2x )} \\ &=& 2- \frac{ 1 } {\cos^2{(x)} } -\cos{( 2x )} \\ \end{array} }$$

$$\begin{array}{rcll} \int \frac{ \cos{( 2x )} \cdot \sin^2{(x)} } { \cos^2{(x)} } &=& \int 2\ dx -\int \frac{ 1 } {\cos^2{(x)} }\ dx -\int \cos{( 2x )}\ dx \\ \end{array}$$

$$\begin{array}{rcll} \text{1.} \qquad \int 2\ dx &=& 2\int dx \\ \int 2\ dx &=& 2x \end{array}$$

$$\begin{array}{rcll} \text{2.} \qquad \int \frac{ 1 } {\cos^2{(x)} }\ dx &=& \int \frac{ \sin^2{(x)}+\cos^2{(x)} }{\cos^2{(x)}} \ dx \\ &=& \int (\tan^2{(x)} + 1 )\ dx\\ && \boxed{~ \begin{array}{rcll} \text{we need: } y &=& \tan{(x)} \\ y &=& \frac{\sin{(x)}} {\cos{(x)}} \\ y' &=& \frac{\sin{(x)}} {\cos{(x)}} \left[ \frac{\cos{(x)}} {\sin{(x)}} - \frac{-\sin{(x)}}{\cos{(x)}} \right] \\ y' &=& \tan{(x)} \left[ \cot{(x)} + \tan{(x)} \right] \\ y' &=& 1+ \tan^2{(x)} \\ \end{array} ~}\\ &=& \int (\tan^2{(x)} + 1 )\ dx \\ \text{we substitute:} ~ u &=& \tan{(x)}\\ du &=&\left( 1+\tan^2{(x)} \right)\ dx\\ &=& \int (\tan^2{(x)} + 1 ) \frac{du}{1+\tan^2{(x)}} \\ &=& \int du\\ &=& u\\ \int \frac{ 1 } {\cos^2{(x)} }\ dx &=& \tan{(x)}\\ \end{array}$$

$$\begin{array}{rcll} \text{3.} \qquad \int \cos{( 2x )}\ dx \\ \text{we substitute:} ~ u &=& 2x\\ du &=&2\ dx\\ \int \cos{( 2x )}\ dx &=& \int \cos{( u )} \frac{du}{2} \\ &=& \frac12 \cdot \int \cos{( u )} \ du \\ &=& \frac12 \cdot \sin{( u )} \\ &=& \frac12 \cdot \sin{( 2x )} \qquad &| \qquad \sin{( 2x )} = 2\cdot \sin{( 2x )}\cdot \cos{( x )} \\ &=& \frac12 \cdot 2\cdot \sin{( 2x )}\cdot \cos{( x )} \\ \int \cos{( 2x )}\ dx &=& \sin{( x )}\cdot \cos{( x )} \\ \end{array}$$

$$\begin{array}{rcll} \int \frac{ \cos{( 2x )} \cdot \sin^2{(x)} } { \cos^2{(x)} } &=& \int 2\ dx -\int \frac{ 1 } {\cos^2{(x)} }\ dx -\int \cos{( 2x )}\ dx \\\\ \int \frac{ \cos{( 2x )} \cdot \sin^2{(x)} } { \cos^2{(x)} } &=& 2x - \tan{(x)}-\sin{( x )}\cdot \cos{( x )} + c \end{array}$$

heureka  Jan 18, 2016
#3
+18829
+10

Sorry:

$$\sin{( 2x )} = 2\cdot \sin{( x )}\cdot \cos{( x )}\\ \frac12 \cdot \sin{( 2x )}= \frac12 \cdot2\cdot \sin{( x )}\cdot \cos{( x )}\\ \frac12 \cdot \sin{( 2x )}=\sin{( x )}\cdot \cos{( x )}\\$$

heureka  Jan 20, 2016

### 4 Online Users

We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  See details