Loading [MathJax]/jax/output/SVG/jax.js
 
+0  
 
0
1887
3
avatar

cos 2x / cos^2(x) * sin^2(x) (integrals) I want to know how to solve it

 Jan 18, 2016

Best Answer 

 #2
avatar+26396 
+41

cos 2x / cos^2(x) * sin^2(x) (integrals) I want to know how to solve it

 

cos(2x)sin2(x)cos2(x)=cos(2x)[1cos2(x)]cos2(x)|sin2(x)=1cos2(x)=cos(2x)[1cos2(x)cos2(x)]=cos(2x)[1cos2(x)1]=cos(2x)cos2(x)cos(2x)|cos(2x)=cos2(x)sin2(x)=cos2(x)sin2(x)cos2(x)cos(2x)=1sin2(x)cos2(x)cos(2x)=11cos2(x)cos2(x)cos(2x)=1[1cos2(x)1]cos(2x)=21cos2(x)cos(2x)

 

cos(2x)sin2(x)cos2(x)=2 dx1cos2(x) dxcos(2x) dx

 

1.2 dx=2dx2 dx=2x

 

2.1cos2(x) dx=sin2(x)+cos2(x)cos2(x) dx=(tan2(x)+1) dx we need: y=tan(x)y=sin(x)cos(x)y=sin(x)cos(x)[cos(x)sin(x)sin(x)cos(x)]y=tan(x)[cot(x)+tan(x)]y=1+tan2(x) =(tan2(x)+1) dxwe substitute: u=tan(x)du=(1+tan2(x)) dx=(tan2(x)+1)du1+tan2(x)=du=u1cos2(x) dx=tan(x)

 

3.cos(2x) dxwe substitute: u=2xdu=2 dxcos(2x) dx=cos(u)du2=12cos(u) du=12sin(u)=12sin(2x)|sin(2x)=2sin(2x)cos(x)=122sin(2x)cos(x)cos(2x) dx=sin(x)cos(x)

 

cos(2x)sin2(x)cos2(x)=2 dx1cos2(x) dxcos(2x) dxcos(2x)sin2(x)cos2(x)=2xtan(x)sin(x)cos(x)+c

 

laugh

 Jan 18, 2016
 #1
avatar
+15

Take the integral:
integral cos(2 x) tan^2(x) dx
For the integrand cos(2 x) tan^2(x), substitute u = tan(x) and  du = sec^2(x)  dx:
  =   integral (u^2 cos(2 tan^(-1)(u)))/(u^2+1) du
Write (u^2 cos(2 tan^(-1)(u)))/(u^2+1) as u^2/(u^2+1)^2-u^4/(u^2+1)^2:
  =   integral (u^2/(u^2+1)^2-u^4/(u^2+1)^2) du
Integrate the sum term by term and factor out constants:
  =  - integral u^4/(u^2+1)^2 du+ integral u^2/(u^2+1)^2 du
For the integrand u^4/(u^2+1)^2, do long division:
  =  - integral (-2/(u^2+1)+1/(u^2+1)^2+1) du+ integral u^2/(u^2+1)^2 du
Integrate the sum term by term and factor out constants:
  =  2 integral 1/(u^2+1) du- integral 1/(u^2+1)^2 du- integral 1 du+ integral u^2/(u^2+1)^2 du
The integral of 1/(u^2+1) is tan^(-1)(u):
  =  2 tan^(-1)(u)- integral 1/(u^2+1)^2 du- integral 1 du+ integral u^2/(u^2+1)^2 du
For the integrand 1/(u^2+1)^2, substitute u = tan(s) and  du = sec^2(s)  ds. Then (u^2+1)^2  =  (tan^2(s)+1)^2  =  sec^4(s) and s = tan^(-1)(u):
  =  2 tan^(-1)(u)- integral cos^2(s) ds- integral 1 du+ integral u^2/(u^2+1)^2 du
Write cos^2(s) as 1/2 cos(2 s)+1/2:
  =  2 tan^(-1)(u)- integral (1/2 cos(2 s)+1/2) ds- integral 1 du+ integral u^2/(u^2+1)^2 du
Integrate the sum term by term and factor out constants:
  =  2 tan^(-1)(u)-1/2 integral cos(2 s) ds-1/2 integral 1 ds- integral 1 du+ integral u^2/(u^2+1)^2 du
For the integrand cos(2 s), substitute p = 2 s and  dp = 2  ds:
  =  2 tan^(-1)(u)-1/4 integral cos(p) dp-1/2 integral 1 ds- integral 1 du+ integral u^2/(u^2+1)^2 du
The integral of cos(p) is sin(p):
  =  2 tan^(-1)(u)-(sin(p))/4-1/2 integral 1 ds- integral 1 du+ integral u^2/(u^2+1)^2 du
The integral of 1 is s:
  =  -s/2+2 tan^(-1)(u)-(sin(p))/4- integral 1 du+ integral u^2/(u^2+1)^2 du
The integral of 1 is u:
  =  -s/2-u+2 tan^(-1)(u)-(sin(p))/4+ integral u^2/(u^2+1)^2 du
For the integrand u^2/(u^2+1)^2, use partial fractions:
  =  -s/2-u+2 tan^(-1)(u)-(sin(p))/4+ integral (1/(u^2+1)-1/(u^2+1)^2) du
Integrate the sum term by term and factor out constants:
  =  -s/2-u+2 tan^(-1)(u)-(sin(p))/4+ integral 1/(u^2+1) du- integral 1/(u^2+1)^2 du
The integral of 1/(u^2+1) is tan^(-1)(u):
  =  -s/2-u+3 tan^(-1)(u)-(sin(p))/4- integral 1/(u^2+1)^2 du
For the integrand 1/(u^2+1)^2, substitute u = tan(w) and  du = sec^2(w)  dw. Then (u^2+1)^2  =  (tan^2(w)+1)^2  =  sec^4(w) and w = tan^(-1)(u):
  =  -s/2-u+3 tan^(-1)(u)-(sin(p))/4- integral cos^2(w) dw
Write cos^2(w) as 1/2 cos(2 w)+1/2:
  =  -s/2-u+3 tan^(-1)(u)-(sin(p))/4- integral (1/2 cos(2 w)+1/2) dw
Integrate the sum term by term and factor out constants:
  =  -s/2-u+3 tan^(-1)(u)-(sin(p))/4-1/2 integral cos(2 w) dw-1/2 integral 1 dw
For the integrand cos(2 w), substitute v = 2 w and  dv = 2  dw:
  =  -s/2-u+3 tan^(-1)(u)-(sin(p))/4-1/4 integral cos(v) dv-1/2 integral 1 dw
The integral of cos(v) is sin(v):
  =  -s/2-u+3 tan^(-1)(u)-(sin(p))/4-(sin(v))/4-1/2 integral 1 dw
The integral of 1 is w:
  =  -(sin(p))/4-s/2-u+3 tan^(-1)(u)-(sin(v))/4-w/2+constant
Substitute back for v = 2 w:
  =  -(sin(p))/4-s/2-u+3 tan^(-1)(u)-w/2-1/4 sin(2 w)+constant
Substitute back for w = tan^(-1)(u):
  =  (-1/4 (u^2+1) (sin(p)+2 s+4 u-10 tan^(-1)(u))-u/2)/(u^2+1)+constant
Substitute back for p = 2 s:
  =  (-1/2 (u^2+1) (s+sin(s) cos(s)+2 u-5 tan^(-1)(u))-u/2)/(u^2+1)+constant
Substitute back for s = tan^(-1)(u):
  =  (-1/2 (u^2+1) (2 u-4 tan^(-1)(u)+sin(tan^(-1)(u)) cos(tan^(-1)(u)))-u/2)/(u^2+1)+constant
Simplify using cos(tan^(-1)(z)) = 1/sqrt(z^2+1) and sin(tan^(-1)(z)) = z/sqrt(z^2+1):
  =  (2 (u^2+1) tan^(-1)(u)-u (u^2+2))/(u^2+1)+constant
Substitute back for u = tan(x):
  =  -1/4 sec(x) (5 sin(x)+sin(3 x)-8 cos(x) tan^(-1)(tan(x)))+constant
Which is equivalent for restricted x values to:
Answer: | =  2 x-tan(x)-sin(x) cos(x)+constant

 Jan 18, 2016
 #2
avatar+26396 
+41
Best Answer

cos 2x / cos^2(x) * sin^2(x) (integrals) I want to know how to solve it

 

cos(2x)sin2(x)cos2(x)=cos(2x)[1cos2(x)]cos2(x)|sin2(x)=1cos2(x)=cos(2x)[1cos2(x)cos2(x)]=cos(2x)[1cos2(x)1]=cos(2x)cos2(x)cos(2x)|cos(2x)=cos2(x)sin2(x)=cos2(x)sin2(x)cos2(x)cos(2x)=1sin2(x)cos2(x)cos(2x)=11cos2(x)cos2(x)cos(2x)=1[1cos2(x)1]cos(2x)=21cos2(x)cos(2x)

 

cos(2x)sin2(x)cos2(x)=2 dx1cos2(x) dxcos(2x) dx

 

1.2 dx=2dx2 dx=2x

 

2.1cos2(x) dx=sin2(x)+cos2(x)cos2(x) dx=(tan2(x)+1) dx we need: y=tan(x)y=sin(x)cos(x)y=sin(x)cos(x)[cos(x)sin(x)sin(x)cos(x)]y=tan(x)[cot(x)+tan(x)]y=1+tan2(x) =(tan2(x)+1) dxwe substitute: u=tan(x)du=(1+tan2(x)) dx=(tan2(x)+1)du1+tan2(x)=du=u1cos2(x) dx=tan(x)

 

3.cos(2x) dxwe substitute: u=2xdu=2 dxcos(2x) dx=cos(u)du2=12cos(u) du=12sin(u)=12sin(2x)|sin(2x)=2sin(2x)cos(x)=122sin(2x)cos(x)cos(2x) dx=sin(x)cos(x)

 

cos(2x)sin2(x)cos2(x)=2 dx1cos2(x) dxcos(2x) dxcos(2x)sin2(x)cos2(x)=2xtan(x)sin(x)cos(x)+c

 

laugh

heureka Jan 18, 2016
 #3
avatar+26396 
+10

Sorry:

 

sin(2x)=2sin(x)cos(x)12sin(2x)=122sin(x)cos(x)12sin(2x)=sin(x)cos(x)

 

laugh

 Jan 20, 2016

1 Online Users