cos 2x / cos^2(x) * sin^2(x) (integrals) I want to know how to solve it
cos(2x)⋅sin2(x)cos2(x)=cos(2x)⋅[1−cos2(x)]cos2(x)|sin2(x)=1−cos2(x)=cos(2x)⋅[1−cos2(x)cos2(x)]=cos(2x)⋅[1cos2(x)−1]=cos(2x)cos2(x)−cos(2x)|cos(2x)=cos2(x)−sin2(x)=cos2(x)−sin2(x)cos2(x)−cos(2x)=1−sin2(x)cos2(x)−cos(2x)=1−1−cos2(x)cos2(x)−cos(2x)=1−[1cos2(x)−1]−cos(2x)=2−1cos2(x)−cos(2x)
∫cos(2x)⋅sin2(x)cos2(x)=∫2 dx−∫1cos2(x) dx−∫cos(2x) dx
1.∫2 dx=2∫dx∫2 dx=2x
2.∫1cos2(x) dx=∫sin2(x)+cos2(x)cos2(x) dx=∫(tan2(x)+1) dx we need: y=tan(x)y=sin(x)cos(x)y′=sin(x)cos(x)[cos(x)sin(x)−−sin(x)cos(x)]y′=tan(x)[cot(x)+tan(x)]y′=1+tan2(x) =∫(tan2(x)+1) dxwe substitute: u=tan(x)du=(1+tan2(x)) dx=∫(tan2(x)+1)du1+tan2(x)=∫du=u∫1cos2(x) dx=tan(x)
3.∫cos(2x) dxwe substitute: u=2xdu=2 dx∫cos(2x) dx=∫cos(u)du2=12⋅∫cos(u) du=12⋅sin(u)=12⋅sin(2x)|sin(2x)=2⋅sin(2x)⋅cos(x)=12⋅2⋅sin(2x)⋅cos(x)∫cos(2x) dx=sin(x)⋅cos(x)
∫cos(2x)⋅sin2(x)cos2(x)=∫2 dx−∫1cos2(x) dx−∫cos(2x) dx∫cos(2x)⋅sin2(x)cos2(x)=2x−tan(x)−sin(x)⋅cos(x)+c
Take the integral:
integral cos(2 x) tan^2(x) dx
For the integrand cos(2 x) tan^2(x), substitute u = tan(x) and du = sec^2(x) dx:
= integral (u^2 cos(2 tan^(-1)(u)))/(u^2+1) du
Write (u^2 cos(2 tan^(-1)(u)))/(u^2+1) as u^2/(u^2+1)^2-u^4/(u^2+1)^2:
= integral (u^2/(u^2+1)^2-u^4/(u^2+1)^2) du
Integrate the sum term by term and factor out constants:
= - integral u^4/(u^2+1)^2 du+ integral u^2/(u^2+1)^2 du
For the integrand u^4/(u^2+1)^2, do long division:
= - integral (-2/(u^2+1)+1/(u^2+1)^2+1) du+ integral u^2/(u^2+1)^2 du
Integrate the sum term by term and factor out constants:
= 2 integral 1/(u^2+1) du- integral 1/(u^2+1)^2 du- integral 1 du+ integral u^2/(u^2+1)^2 du
The integral of 1/(u^2+1) is tan^(-1)(u):
= 2 tan^(-1)(u)- integral 1/(u^2+1)^2 du- integral 1 du+ integral u^2/(u^2+1)^2 du
For the integrand 1/(u^2+1)^2, substitute u = tan(s) and du = sec^2(s) ds. Then (u^2+1)^2 = (tan^2(s)+1)^2 = sec^4(s) and s = tan^(-1)(u):
= 2 tan^(-1)(u)- integral cos^2(s) ds- integral 1 du+ integral u^2/(u^2+1)^2 du
Write cos^2(s) as 1/2 cos(2 s)+1/2:
= 2 tan^(-1)(u)- integral (1/2 cos(2 s)+1/2) ds- integral 1 du+ integral u^2/(u^2+1)^2 du
Integrate the sum term by term and factor out constants:
= 2 tan^(-1)(u)-1/2 integral cos(2 s) ds-1/2 integral 1 ds- integral 1 du+ integral u^2/(u^2+1)^2 du
For the integrand cos(2 s), substitute p = 2 s and dp = 2 ds:
= 2 tan^(-1)(u)-1/4 integral cos(p) dp-1/2 integral 1 ds- integral 1 du+ integral u^2/(u^2+1)^2 du
The integral of cos(p) is sin(p):
= 2 tan^(-1)(u)-(sin(p))/4-1/2 integral 1 ds- integral 1 du+ integral u^2/(u^2+1)^2 du
The integral of 1 is s:
= -s/2+2 tan^(-1)(u)-(sin(p))/4- integral 1 du+ integral u^2/(u^2+1)^2 du
The integral of 1 is u:
= -s/2-u+2 tan^(-1)(u)-(sin(p))/4+ integral u^2/(u^2+1)^2 du
For the integrand u^2/(u^2+1)^2, use partial fractions:
= -s/2-u+2 tan^(-1)(u)-(sin(p))/4+ integral (1/(u^2+1)-1/(u^2+1)^2) du
Integrate the sum term by term and factor out constants:
= -s/2-u+2 tan^(-1)(u)-(sin(p))/4+ integral 1/(u^2+1) du- integral 1/(u^2+1)^2 du
The integral of 1/(u^2+1) is tan^(-1)(u):
= -s/2-u+3 tan^(-1)(u)-(sin(p))/4- integral 1/(u^2+1)^2 du
For the integrand 1/(u^2+1)^2, substitute u = tan(w) and du = sec^2(w) dw. Then (u^2+1)^2 = (tan^2(w)+1)^2 = sec^4(w) and w = tan^(-1)(u):
= -s/2-u+3 tan^(-1)(u)-(sin(p))/4- integral cos^2(w) dw
Write cos^2(w) as 1/2 cos(2 w)+1/2:
= -s/2-u+3 tan^(-1)(u)-(sin(p))/4- integral (1/2 cos(2 w)+1/2) dw
Integrate the sum term by term and factor out constants:
= -s/2-u+3 tan^(-1)(u)-(sin(p))/4-1/2 integral cos(2 w) dw-1/2 integral 1 dw
For the integrand cos(2 w), substitute v = 2 w and dv = 2 dw:
= -s/2-u+3 tan^(-1)(u)-(sin(p))/4-1/4 integral cos(v) dv-1/2 integral 1 dw
The integral of cos(v) is sin(v):
= -s/2-u+3 tan^(-1)(u)-(sin(p))/4-(sin(v))/4-1/2 integral 1 dw
The integral of 1 is w:
= -(sin(p))/4-s/2-u+3 tan^(-1)(u)-(sin(v))/4-w/2+constant
Substitute back for v = 2 w:
= -(sin(p))/4-s/2-u+3 tan^(-1)(u)-w/2-1/4 sin(2 w)+constant
Substitute back for w = tan^(-1)(u):
= (-1/4 (u^2+1) (sin(p)+2 s+4 u-10 tan^(-1)(u))-u/2)/(u^2+1)+constant
Substitute back for p = 2 s:
= (-1/2 (u^2+1) (s+sin(s) cos(s)+2 u-5 tan^(-1)(u))-u/2)/(u^2+1)+constant
Substitute back for s = tan^(-1)(u):
= (-1/2 (u^2+1) (2 u-4 tan^(-1)(u)+sin(tan^(-1)(u)) cos(tan^(-1)(u)))-u/2)/(u^2+1)+constant
Simplify using cos(tan^(-1)(z)) = 1/sqrt(z^2+1) and sin(tan^(-1)(z)) = z/sqrt(z^2+1):
= (2 (u^2+1) tan^(-1)(u)-u (u^2+2))/(u^2+1)+constant
Substitute back for u = tan(x):
= -1/4 sec(x) (5 sin(x)+sin(3 x)-8 cos(x) tan^(-1)(tan(x)))+constant
Which is equivalent for restricted x values to:
Answer: | = 2 x-tan(x)-sin(x) cos(x)+constant
cos 2x / cos^2(x) * sin^2(x) (integrals) I want to know how to solve it
cos(2x)⋅sin2(x)cos2(x)=cos(2x)⋅[1−cos2(x)]cos2(x)|sin2(x)=1−cos2(x)=cos(2x)⋅[1−cos2(x)cos2(x)]=cos(2x)⋅[1cos2(x)−1]=cos(2x)cos2(x)−cos(2x)|cos(2x)=cos2(x)−sin2(x)=cos2(x)−sin2(x)cos2(x)−cos(2x)=1−sin2(x)cos2(x)−cos(2x)=1−1−cos2(x)cos2(x)−cos(2x)=1−[1cos2(x)−1]−cos(2x)=2−1cos2(x)−cos(2x)
∫cos(2x)⋅sin2(x)cos2(x)=∫2 dx−∫1cos2(x) dx−∫cos(2x) dx
1.∫2 dx=2∫dx∫2 dx=2x
2.∫1cos2(x) dx=∫sin2(x)+cos2(x)cos2(x) dx=∫(tan2(x)+1) dx we need: y=tan(x)y=sin(x)cos(x)y′=sin(x)cos(x)[cos(x)sin(x)−−sin(x)cos(x)]y′=tan(x)[cot(x)+tan(x)]y′=1+tan2(x) =∫(tan2(x)+1) dxwe substitute: u=tan(x)du=(1+tan2(x)) dx=∫(tan2(x)+1)du1+tan2(x)=∫du=u∫1cos2(x) dx=tan(x)
3.∫cos(2x) dxwe substitute: u=2xdu=2 dx∫cos(2x) dx=∫cos(u)du2=12⋅∫cos(u) du=12⋅sin(u)=12⋅sin(2x)|sin(2x)=2⋅sin(2x)⋅cos(x)=12⋅2⋅sin(2x)⋅cos(x)∫cos(2x) dx=sin(x)⋅cos(x)
∫cos(2x)⋅sin2(x)cos2(x)=∫2 dx−∫1cos2(x) dx−∫cos(2x) dx∫cos(2x)⋅sin2(x)cos2(x)=2x−tan(x)−sin(x)⋅cos(x)+c