+0  
 
0
52
1
avatar+378 

Determine the set of all real x satisfying \($$(x^2+3x-1)^2<9.$$\) Enter your answer in interval notation.

 
waffles  Nov 14, 2017
Sort: 

1+0 Answers

 #1
avatar+78753 
+2

(x^2 + 3x - 1)^2  < 9

 

Let us solve this

 

(x^2 + 3x - 1)^2  = 9

 

For this to be true, either

 

x^2 + 3x - 1  =  3              or            x^2 + 3x - 1  =  -3          so

 

x^2 + 3x - 4  = 0                              x^2 + 3x + 2  = 0

 

(x + 4) ( x - 1)  = 0                            (x + 1) ( x + 2)  = 0

 

x = -4, x= 1                                          x = -1, x = -2

 

So  we have  5  possiible intervals to test

 

(-inf ,  -4)(-4, -2) , (-2, - 1), (-1, 1) and (1, inf) 

 

Picking a test point in each interval, the intervals highlighted in red are the solution intervals

 

Here's the graph to prove this : https://www.desmos.com/calculator/znkgxcywlo

 

 

cool cool cool

 
CPhill  Nov 14, 2017

13 Online Users

avatar
avatar
avatar
We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  See details