f(x)=x3+2cos(x)2sin(x)f′(x)=(2sinx)(3x2−2sin(x))−2cos(x)(x3−2cos(x))4sin2(x)f′(x)=(2sinx)(3x2−2sin(x))4sin2(x)−2cos(x)(x3−2cos(x))4sin2(x)f′(x)=(3x2−2sin(x))2sin(x)−cos(x)(x3−2cos(x))2sin2(x)f′(x)=3x22sin(x)−1−x3cos(x)−2cos2(x)2sin2(x)f′(x)=3x22sin(x)−1−x3cos(x)2sin2(x)−cos2(x)sin2(x)f′(x)=3x22sin(x)−1−x3cos(x)2sin2(x)−(tan(x))−2
f′(π/2)=3∗π242−1−π323∗02−0f′(π/2)=3π28−1f′(π2)=3π2−88
ddxx3cos(x)2sin2(x)=(2sin2(x))∗[3x2cos(x)−x3sin(x)]−4sin(x)cos(x)∗x3cos(x)4sin2(x)=[6x2sin2(x)cos(x)−2x3sin3(x)]−4x3sin(x)cos2(x)4sin2(x)=3x2sin(x)cos(x)−x3sin2(x)−2x3cos2(x)2sin(x)=3x2sin(x)cos(x)2sin(x)−x3sin2(x)2sin(x)−2x3cos2(x)2sin(x)=3x2cos(x)2−x3sin(x)2−x3cos2(x)sin(x)
f′(x)=3x22sin(x)−1−x3cos(x)2sin2(x)−(tan(x))−2f″(x)=12xsin(x)−6x2cos(x)4sin2(x)−[3x2cos(x)2−x3sin(x)2−x3cos2(x)sin(x)]+2(tan(x))−3(sec(x))2f″(x)=12xsin(x)−6x2cos(x)4sin2(x)−[3x2cos(x)2−x3sin(x)2−x3cos2(x)sin(x)]+2cos3(x)sin3(x)cos2(x)f″(x)=12xsin(x)−6x2cos(x)4sin2(x)−3x2cos(x)2+x3sin(x)2+x3cos2(x)sin(x)+2cos(x)sin3(x)f″(π2)=6π∗1−04∗1−3x2∗02+π316+x3∗01+01f″(π2)=3π2+π316
Oh dear, I thought I was supposed to find f '' Maybe I was only supposed to find f '
oh well I will go back and do that too.