Loading [MathJax]/jax/output/SVG/jax.js
 
+0  
 
0
1
1417
4
avatar

If f(x)=(x^3+2 cos(x))/(2sin(x)), find f'(π/2)

 Oct 25, 2015

Best Answer 

 #3
avatar+33654 
+5

Both Melody and Omi have produced the correct result for f'(pi/2)  (Omi's 6pi^2/16 can be simplifird to 3pi^2/8)

 

(but Omi, you should have written f'(pi/2) for your last three f's, not f'(x)) 

.

 Oct 25, 2015
 #1
avatar+118696 
+5

f(x)=x3+2cos(x)2sin(x)f(x)=(2sinx)(3x22sin(x))2cos(x)(x32cos(x))4sin2(x)f(x)=(2sinx)(3x22sin(x))4sin2(x)2cos(x)(x32cos(x))4sin2(x)f(x)=(3x22sin(x))2sin(x)cos(x)(x32cos(x))2sin2(x)f(x)=3x22sin(x)1x3cos(x)2cos2(x)2sin2(x)f(x)=3x22sin(x)1x3cos(x)2sin2(x)cos2(x)sin2(x)f(x)=3x22sin(x)1x3cos(x)2sin2(x)(tan(x))2

 

f(π/2)=3π2421π323020f(π/2)=3π281f(π2)=3π288

 

 

 

ddxx3cos(x)2sin2(x)=(2sin2(x))[3x2cos(x)x3sin(x)]4sin(x)cos(x)x3cos(x)4sin2(x)=[6x2sin2(x)cos(x)2x3sin3(x)]4x3sin(x)cos2(x)4sin2(x)=3x2sin(x)cos(x)x3sin2(x)2x3cos2(x)2sin(x)=3x2sin(x)cos(x)2sin(x)x3sin2(x)2sin(x)2x3cos2(x)2sin(x)=3x2cos(x)2x3sin(x)2x3cos2(x)sin(x)

 

f(x)=3x22sin(x)1x3cos(x)2sin2(x)(tan(x))2f(x)=12xsin(x)6x2cos(x)4sin2(x)[3x2cos(x)2x3sin(x)2x3cos2(x)sin(x)]+2(tan(x))3(sec(x))2f(x)=12xsin(x)6x2cos(x)4sin2(x)[3x2cos(x)2x3sin(x)2x3cos2(x)sin(x)]+2cos3(x)sin3(x)cos2(x)f(x)=12xsin(x)6x2cos(x)4sin2(x)3x2cos(x)2+x3sin(x)2+x3cos2(x)sin(x)+2cos(x)sin3(x)f(π2)=6π10413x202+π316+x301+01f(π2)=3π2+π316

 

Oh dear, I thought I was supposed to find f ''  Maybe I was only supposed to find f '         blush

oh well I will go back and do that too.     angel

.
 Oct 25, 2015
edited by Melody  Oct 25, 2015
 #2
avatar+12530 
+5

I have differently simplified a little bit.

laugh

 Oct 25, 2015
 #3
avatar+33654 
+5
Best Answer

Both Melody and Omi have produced the correct result for f'(pi/2)  (Omi's 6pi^2/16 can be simplifird to 3pi^2/8)

 

(but Omi, you should have written f'(pi/2) for your last three f's, not f'(x)) 

.

Alan Oct 25, 2015
 #4
avatar+12530 
0

Jetzt stimmt es aber. Danke Alan. Manchmal passe ich nicht richtig auf.crying

Now it is the right way.Thanks Alan.Sometimes I did not fit enough to.crying

 Oct 25, 2015

0 Online Users