Loading [MathJax]/jax/output/SVG/jax.js
 
+0  
 
0
1280
3
avatar+5265 

Given: A(2, 4), B(-4, 2), C(4, -2), D(-1, 3), E(3, 1)

 

Prove: Triangle ABC is similar to Triangle ADE

 Mar 3, 2016

Best Answer 

 #1
avatar+2499 
+25

what you need to find is distance from one point to another (sides of triangle):

(x2x1)2+(y2y1)2ABCtriangleAB=(6)2+(2)2=6.324555AC=(42)2+(24)2=6.324555BC=(4(4))2+(22)2=8.944272

 

 

 

ADEtriangleAD=(12)2+(34)2=3.162278AE=(32)2+(14)2=3.162278DE=(3(1))2+(13)2=4.472136

 

SO:

ABAD=ACAE=BCDE=1.999999683772268

 Mar 4, 2016
 #1
avatar+2499 
+25
Best Answer

what you need to find is distance from one point to another (sides of triangle):

(x2x1)2+(y2y1)2ABCtriangleAB=(6)2+(2)2=6.324555AC=(42)2+(24)2=6.324555BC=(4(4))2+(22)2=8.944272

 

 

 

ADEtriangleAD=(12)2+(34)2=3.162278AE=(32)2+(14)2=3.162278DE=(3(1))2+(13)2=4.472136

 

SO:

ABAD=ACAE=BCDE=1.999999683772268

Solveit Mar 4, 2016
 #2
avatar+118696 
+20

Nice work solveit :)

 Mar 5, 2016
 #3
avatar+118696 
+15

Solveit,

Your answer is very good but you would have been better off to stick to exact values.

AD =sqrt (10)

AB = 2*sqrt(10)

 

so     AB/AD = 2

I am sure that this would be true for the other ratios that you looked at as well.

 

So the triangles are similar AND the dimensions of the bigger one are exactly twice that of the smaller one  :))

 Mar 6, 2016

4 Online Users

avatar