+0

# Factoring help

0
45
1

don't know how you do this

Guest Oct 30, 2017

#1
0

Factor  a^2b^4 - 4b^2 + 2a^2b^2 - 8

Factor the following:
a^2 b^4 - 4 b^2 + 2 a^2 b^2 - 8

Factor terms by grouping. a^2 b^4 - 4 b^2 + 2 a^2 b^2 - 8 = (2 a^2 b^2 + a^2 b^4) + (-4 b^2 - 8) = a^2 b^2 (b^2 + 2) - 4 (b^2 + 2):
a^2 b^2 (b^2 + 2) - 4 (b^2 + 2)

Factor b^2 + 2 from a^2 b^2 (b^2 + 2) - 4 (b^2 + 2):
(b^2 + 2) (a^2 b^2 - 4)

a^2 b^2 - 4 = (a b)^2 - 2^2:
(a b)^2 - 2^2 (b^2 + 2)

Factor the difference of two squares. (a b)^2 - 2^2 = (a b - 2) (a b + 2):
(ab - 2) (ab + 2) (b^2 + 2)  OR (1)

Guest Oct 30, 2017
Sort:

#1
0

Factor  a^2b^4 - 4b^2 + 2a^2b^2 - 8

Factor the following:
a^2 b^4 - 4 b^2 + 2 a^2 b^2 - 8

Factor terms by grouping. a^2 b^4 - 4 b^2 + 2 a^2 b^2 - 8 = (2 a^2 b^2 + a^2 b^4) + (-4 b^2 - 8) = a^2 b^2 (b^2 + 2) - 4 (b^2 + 2):
a^2 b^2 (b^2 + 2) - 4 (b^2 + 2)

Factor b^2 + 2 from a^2 b^2 (b^2 + 2) - 4 (b^2 + 2):
(b^2 + 2) (a^2 b^2 - 4)

a^2 b^2 - 4 = (a b)^2 - 2^2:
(a b)^2 - 2^2 (b^2 + 2)

Factor the difference of two squares. (a b)^2 - 2^2 = (a b - 2) (a b + 2):
(ab - 2) (ab + 2) (b^2 + 2)  OR (1)

Guest Oct 30, 2017

### 9 Online Users

We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  See details