+0  
 
+3
383
2
avatar+1794 

Find all 4th roots of z=5000+i.  Show all work and draw a graph to reprecipent the answers.

gibsonj338  Dec 23, 2015

Best Answer 

 #2
avatar+91001 
+10

Find all 4th roots of z=5000+i.  Show all work and draw a graph to reprecipent the answers.

I think I have worked out how to do this quite neatly I think but I do not know the correct terminology. 

 

I am not familiar with the correct terms so i used this page to help me there.

http://www.sparknotes.com/math/precalc/complexnumbers/terms.html

 

 

 

The distance (modulus) of this point from 0 is   \(\sqrt{5000^2+1^1}=\sqrt{25000001}\)

 

The distance (modulus) from 0 that the roots will be is  \((\sqrt{25000001})^{1/4}=25000001^{1/8}=\sqrt[8]{25000001}\)

 

(25000001)^(1/8) = 8.4089641945819655     approx 8.4090

 

First, 2pi/4 = pi/2  so the roots will be approx 8.409  units from 0 and pi/2 radians apart.

 

z=5000+i

 

I have just drawn a right angle triangle on a scrap of paper to work this out.

 

\(z=\sqrt{25000001}*(\frac{5000}{\sqrt{25000001}}+\frac{1i}{\sqrt{25000001}})\)

 

 

\(cos\theta=\frac{5000}{\sqrt{25000001}}\qquad and \qquad sin\theta=\frac{1}{\sqrt{25000001}}\)

 

argument (angle) of the first root is     acos(5000/sqrt(25000001) = 0.000199999998

asin(1/sqrt(25000001)) = 0.000199999997

They had to be the same, I was just showing you. :)

 

So the angle (argument) is very close to 0.0002 radians

The first 4th root angle is \(acos(\frac{5000}{\sqrt{25000001}})\div4\approx 0.0002\div4 = 0.00005 \;radians\)

 

So the angles of the 4 roots will be

0.00005, 0.00005+pi/2, 0.00005+pi, 0.0005+3pi/2

 

0.00005+pi/2 = 1.5708463267948966                    approx 1.5708 radians     

0.00005+pi/2+pi/2 = 3.1416426535897932            approx 3.1416  radians

0.00005+pi/2+pi/2+pi/2 = 4.7124389803846899    approx  4.7124  radians

 

So the 4th roots of  z=5000+i    are

8.409e^(0.00005i), 8.409e^(1.5708i), 8.409e^(3.1416i), 8.409e^(4.712i)

 

Check the first one.     

(8.409e^(0.00005i))^4 = 5000.08516065925605241+1.000017045882085632i   near enough

 

Melody  Dec 24, 2015
Sort: 

2+0 Answers

 #1
avatar
+5

z = (5000+i)^(1/4)

Algebraic form:
z = 8.4089642+0.0004204i

Exponential form:
z = 8.4089642 × ei 0°10″

Trigonometric form:
z = 8.4089642 × (cos 0°10″ + i sin 0°10″)

Polar form:
r = |z| = 8.40896
φ = arg z = 0.00286° = 0°10″ = 2.0E-5π


All 4th roots are:

13^(1/4) 147929^(1/8) e^(1/4 i tan^(-1)(1/5000))=8.4090+0.0004 i  (principal root)

13^(1/4) 147929^(1/8) e^((i pi)/2+1/4 i tan^(-1)(1/5000))=-0.0004+8.4090 i

13^(1/4) 147929^(1/8) e^(i pi+1/4 i tan^(-1)(1/5000))=-8.4090-0.0004 i

13^(1/4) 147929^(1/8) e^((3 i pi)/2+1/4 i tan^(-1)(1/5000))=0.0004-8.4090 i

Guest Dec 24, 2015
 #2
avatar+91001 
+10
Best Answer

Find all 4th roots of z=5000+i.  Show all work and draw a graph to reprecipent the answers.

I think I have worked out how to do this quite neatly I think but I do not know the correct terminology. 

 

I am not familiar with the correct terms so i used this page to help me there.

http://www.sparknotes.com/math/precalc/complexnumbers/terms.html

 

 

 

The distance (modulus) of this point from 0 is   \(\sqrt{5000^2+1^1}=\sqrt{25000001}\)

 

The distance (modulus) from 0 that the roots will be is  \((\sqrt{25000001})^{1/4}=25000001^{1/8}=\sqrt[8]{25000001}\)

 

(25000001)^(1/8) = 8.4089641945819655     approx 8.4090

 

First, 2pi/4 = pi/2  so the roots will be approx 8.409  units from 0 and pi/2 radians apart.

 

z=5000+i

 

I have just drawn a right angle triangle on a scrap of paper to work this out.

 

\(z=\sqrt{25000001}*(\frac{5000}{\sqrt{25000001}}+\frac{1i}{\sqrt{25000001}})\)

 

 

\(cos\theta=\frac{5000}{\sqrt{25000001}}\qquad and \qquad sin\theta=\frac{1}{\sqrt{25000001}}\)

 

argument (angle) of the first root is     acos(5000/sqrt(25000001) = 0.000199999998

asin(1/sqrt(25000001)) = 0.000199999997

They had to be the same, I was just showing you. :)

 

So the angle (argument) is very close to 0.0002 radians

The first 4th root angle is \(acos(\frac{5000}{\sqrt{25000001}})\div4\approx 0.0002\div4 = 0.00005 \;radians\)

 

So the angles of the 4 roots will be

0.00005, 0.00005+pi/2, 0.00005+pi, 0.0005+3pi/2

 

0.00005+pi/2 = 1.5708463267948966                    approx 1.5708 radians     

0.00005+pi/2+pi/2 = 3.1416426535897932            approx 3.1416  radians

0.00005+pi/2+pi/2+pi/2 = 4.7124389803846899    approx  4.7124  radians

 

So the 4th roots of  z=5000+i    are

8.409e^(0.00005i), 8.409e^(1.5708i), 8.409e^(3.1416i), 8.409e^(4.712i)

 

Check the first one.     

(8.409e^(0.00005i))^4 = 5000.08516065925605241+1.000017045882085632i   near enough

 

Melody  Dec 24, 2015

8 Online Users

avatar
avatar
avatar
We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  See details