Loading [MathJax]/jax/output/SVG/jax.js
 
+0  
 
0
1281
4
avatar

Pi/4=8arctan(1/10) - arctan(a/b). Find "a" and "b", so that the equality is true. Thank you very much for any help.

 Dec 2, 2015

Best Answer 

 #2
avatar+26396 
+40

Pi/4=8arctan(1/10) - arctan(a/b). Find "a" and "b", so that the equality is true. Thank you very much for any help.

 

8arctan(110)arctan(ab)=π4

 

Formula:  tan(2x)=2tan(x)1tan(x)tan(x) 

 

I.  We set:    x=arctan(110) and tan(x)=110

tan(2x)=tan(2arctan(110))=2tan(x)1tan(x)tan(x)=21101110110=20992arctan(110)=arctan(2099)

 

 

II. We set:   x=2arctan(110)=arctan(2099) and tan(x)=2099

tan(2x)=tan(4arctan(110))=2tan(x)1tan(x)tan(x)=22099120992099=396094014arctan(110)=arctan(39609401)

 

 

III. We set:   x=4arctan(110)=arctan(39609401) and tan(x)=39609401

tan(2x)=tan(8arctan(110))=2tan(x)1tan(x)tan(x)=23960940113960940139609401=74455920726972018arctan(110)=arctan(7445592072697201)

 

 

IV.

Formula:  tan(x+y)=tan(x)+tan(y)1tan(x)tan(y) 

 

We set:   x=8arctan(110)=arctan(7445592072697201) and tan(x)=7445592072697201y=arctan(ab) and tan(y)=abtan(x+y)=1

 

tan(x+y)=tan(x)+tan(y)1tan(x)tan(y)=7445592072697201+ab17445592072697201ab=17445592072697201+ab17445592072697201ab=17445592072697201+ab=17445592072697201abab+7445592072697201ab=17445592072697201ab(1+7445592072697201)=17445592072697201ab(72697201+7445592072697201)=726972017445592072697201ab(72697201+74455920)=7269720174455920ab=726972017445592072697201+74455920ab=1758719147153121tan(x+y)=1tan(8arctan(110)+arctan(ab))=1tan(8arctan(110)arctan(1758719147153121))=18arctan(110)arctan(1758719147153121)=arctan(1)8arctan(110)arctan(1758719147153121)=π4

 

laugh

 Dec 2, 2015
 #2
avatar+26396 
+40
Best Answer

Pi/4=8arctan(1/10) - arctan(a/b). Find "a" and "b", so that the equality is true. Thank you very much for any help.

 

8arctan(110)arctan(ab)=π4

 

Formula:  tan(2x)=2tan(x)1tan(x)tan(x) 

 

I.  We set:    x=arctan(110) and tan(x)=110

tan(2x)=tan(2arctan(110))=2tan(x)1tan(x)tan(x)=21101110110=20992arctan(110)=arctan(2099)

 

 

II. We set:   x=2arctan(110)=arctan(2099) and tan(x)=2099

tan(2x)=tan(4arctan(110))=2tan(x)1tan(x)tan(x)=22099120992099=396094014arctan(110)=arctan(39609401)

 

 

III. We set:   x=4arctan(110)=arctan(39609401) and tan(x)=39609401

tan(2x)=tan(8arctan(110))=2tan(x)1tan(x)tan(x)=23960940113960940139609401=74455920726972018arctan(110)=arctan(7445592072697201)

 

 

IV.

Formula:  tan(x+y)=tan(x)+tan(y)1tan(x)tan(y) 

 

We set:   x=8arctan(110)=arctan(7445592072697201) and tan(x)=7445592072697201y=arctan(ab) and tan(y)=abtan(x+y)=1

 

tan(x+y)=tan(x)+tan(y)1tan(x)tan(y)=7445592072697201+ab17445592072697201ab=17445592072697201+ab17445592072697201ab=17445592072697201+ab=17445592072697201abab+7445592072697201ab=17445592072697201ab(1+7445592072697201)=17445592072697201ab(72697201+7445592072697201)=726972017445592072697201ab(72697201+74455920)=7269720174455920ab=726972017445592072697201+74455920ab=1758719147153121tan(x+y)=1tan(8arctan(110)+arctan(ab))=1tan(8arctan(110)arctan(1758719147153121))=18arctan(110)arctan(1758719147153121)=arctan(1)8arctan(110)arctan(1758719147153121)=π4

 

laugh

heureka Dec 2, 2015
 #3
avatar+118696 
+5

Thanks Heureka, that is a fabulous answer. :)

 Dec 2, 2015
 #4
avatar
+10

Brilliant work, heureka!. Thank you very much for  the outstanding technical work and the final answer. I noticed that both "a" and "b" are primes! Wasn't expecting that at all. A brief question: couldn't this be solved by " continued fraction" method? That is: Pi/4= 8arctan(1/10) - arctan(1)=0.011951......etc. Then we take the tangent of this, which comes to=0.011951625545203353.......which is the answer of your two numbers: 1,758,719 / 147,153,121=0.011951625545203353........etc.

 

P.S. I plugged this into "WolframAlpha" and sure enough it gives this continued fraction:

[0; 83, 1, 2, 27, 1, 2, 1, 1, 1, 2, 3, 4, 6, 1, 6], When you work this backwards, it gives the fraction you found!:1758719/147153121=0.01195162554520335317930497716049121377452810.....

THANKS A LOT.

 Dec 2, 2015

2 Online Users