+0  
 
0
338
4
avatar

Pi/4=8arctan(1/10) - arctan(a/b). Find "a" and "b", so that the equality is true. Thank you very much for any help.

Guest Dec 2, 2015

Best Answer 

 #2
avatar+18715 
+40

Pi/4=8arctan(1/10) - arctan(a/b). Find "a" and "b", so that the equality is true. Thank you very much for any help.

 

\(\begin{array}{rcl} 8\cdot \arctan{ ( \frac{1}{10} ) } - \arctan{ ( \frac{a}{b} ) } &=& \frac{\pi}{4}\\ \end{array}\)

 

\( \text{Formula: } \quad \boxed{~ \tan{(2x)} = \frac{ 2\tan{(x)} }{ 1- \tan{(x)}\cdot \tan{(x)} } ~}\)

 

I.  We set:    \(x = \arctan{ ( \frac{1}{10} ) } \quad \text{ and } \quad \tan{(x)} = \frac{1}{10}\)

\(\small{ \begin{array}{rcl} \tan{(2x)} = \tan{( 2 \arctan{ ( \frac{1}{10} ) } )} &=& \frac{ 2\tan{(x)} }{ 1- \tan{(x)}\cdot \tan{(x)} }= \dfrac{2\cdot \frac{1}{10} } { 1- \frac{1}{10}\cdot \frac{1}{10} } = \frac{20}{99}\\ \qquad 2 \arctan{ ( \frac{1}{10} ) } &=& \arctan{ ( \frac{20}{99} ) } \end{array} }\)

 

 

II. We set:   \(x = 2\arctan{ ( \frac{1}{10} ) } = \arctan{ ( \frac{20}{99} ) }\quad \text{ and } \quad \tan{(x)} = \frac{20}{99} \)

\(\small{ \begin{array}{rcl} \tan{(2x)} = \tan{( 4 \arctan{ ( \frac{1}{10} ) } )} &=& \frac{ 2\tan{(x)} }{ 1- \tan{(x)}\cdot \tan{(x)} } =\dfrac{2\cdot \frac{20}{99} } { 1- \frac{20}{99}\cdot \frac{20}{99} } = \frac{3960}{9401}\\ \qquad 4 \arctan{ ( \frac{1}{10} ) } &=& \arctan{ ( \frac{3960}{9401} ) } \end{array} }\)

 

 

III. We set:   \(x = 4\arctan{ ( \frac{1}{10} ) } = \arctan{ ( \frac{3960}{9401} ) }\quad \text{ and } \quad \tan{(x)} = \frac{3960}{9401} \)

\(\small{ \begin{array}{rcl} \tan{(2x)} = \tan{( 8 \arctan{ ( \frac{1}{10} ) } )} &=& \frac{ 2\tan{(x)} }{ 1- \tan{(x)}\cdot \tan{(x)} } =\dfrac{2\cdot \frac{3960}{9401} } { 1- \frac{3960}{9401}\cdot \frac{3960}{9401} } = \frac{74455920}{72697201}\\ \qquad 8 \arctan{ ( \frac{1}{10} ) } &=& \arctan{ ( \frac{74455920}{72697201} ) } \end{array} }\)

 

 

IV.

\(\text{Formula: } \quad \boxed{~ \tan{(x+y)} = \frac{ \tan{(x)}+\tan{(y)} }{ 1- \tan{(x)}\cdot \tan{(y)} } ~}\)

 

We set:   \(x = 8\arctan{ ( \frac{1}{10} ) } = \arctan{ ( \frac{74455920}{72697201} ) } \quad \text{ and } \quad \tan{(x)} = \frac{74455920}{72697201}\\ y = \arctan{ ( \frac{a}{b} ) } \quad \text{ and } \quad \tan{(y)} = \frac{a}{b}\\ \tan{(x+y)} = 1\)

 

\(\small{ \begin{array}{rcl} \tan{(x+y)} = \frac{ \tan{(x)}+\tan{(y)} }{ 1- \tan{(x)}\cdot \tan{(y)} } &=& \dfrac{ \frac{74455920}{72697201}+\frac{a}{b} }{ 1- \frac{74455920}{72697201}\cdot \frac{a}{b} } = 1\\\\ \qquad \dfrac{ \frac{74455920}{72697201}+\frac{a}{b} }{ 1- \frac{74455920}{72697201}\cdot \frac{a}{b} } &=& 1\\\\ \qquad \frac{74455920}{72697201}+\frac{a}{b} &=& 1- \frac{74455920}{72697201}\cdot \frac{a}{b}\\\\ \qquad \frac{a}{b}+ \frac{74455920}{72697201}\cdot \frac{a}{b} &=& 1-\frac{74455920}{72697201}\\\\ \qquad \frac{a}{b}\cdot \left( 1 + \frac{74455920}{72697201} \right) &=& 1-\frac{74455920}{72697201}\\\\ \qquad \frac{a}{b}\cdot \left( \frac{72697201+74455920}{72697201} \right) &=& \frac{72697201-74455920}{72697201}\\\\ \qquad \frac{a}{b}\cdot ( 72697201+74455920 ) &=& 72697201-74455920\\\\ \qquad \frac{a}{b} &=& \dfrac{ 72697201-74455920 } { 72697201+74455920 }\\\\ \qquad \frac{a}{b} &=& \dfrac{ -1758719 } { 147153121 }\\\\ \hline \\ \tan{(x+y)} = 1 \\ \tan{(8\arctan{ ( \frac{1}{10} ) }+\arctan{ ( \frac{a}{b} ) })} &=& 1 \\ \tan{(8\arctan{ ( \frac{1}{10} ) }-\arctan{ ( \frac{ 1758719 } { 147153121 } ) })} &=& 1 \\ 8\arctan{ ( \frac{1}{10} ) }-\arctan{ ( \frac{ 1758719 } { 147153121 } ) } &=& \arctan{(1)} \\\\ \mathbf{ 8\arctan{ ( \dfrac{1}{10} ) }-\arctan{ ( \dfrac{ 1758719 } { 147153121 } ) } } & \mathbf{=} & \mathbf{\dfrac{\pi} {4}} \end{array} }\)

 

laugh

heureka  Dec 2, 2015
Sort: 

3+0 Answers

 #2
avatar+18715 
+40
Best Answer

Pi/4=8arctan(1/10) - arctan(a/b). Find "a" and "b", so that the equality is true. Thank you very much for any help.

 

\(\begin{array}{rcl} 8\cdot \arctan{ ( \frac{1}{10} ) } - \arctan{ ( \frac{a}{b} ) } &=& \frac{\pi}{4}\\ \end{array}\)

 

\( \text{Formula: } \quad \boxed{~ \tan{(2x)} = \frac{ 2\tan{(x)} }{ 1- \tan{(x)}\cdot \tan{(x)} } ~}\)

 

I.  We set:    \(x = \arctan{ ( \frac{1}{10} ) } \quad \text{ and } \quad \tan{(x)} = \frac{1}{10}\)

\(\small{ \begin{array}{rcl} \tan{(2x)} = \tan{( 2 \arctan{ ( \frac{1}{10} ) } )} &=& \frac{ 2\tan{(x)} }{ 1- \tan{(x)}\cdot \tan{(x)} }= \dfrac{2\cdot \frac{1}{10} } { 1- \frac{1}{10}\cdot \frac{1}{10} } = \frac{20}{99}\\ \qquad 2 \arctan{ ( \frac{1}{10} ) } &=& \arctan{ ( \frac{20}{99} ) } \end{array} }\)

 

 

II. We set:   \(x = 2\arctan{ ( \frac{1}{10} ) } = \arctan{ ( \frac{20}{99} ) }\quad \text{ and } \quad \tan{(x)} = \frac{20}{99} \)

\(\small{ \begin{array}{rcl} \tan{(2x)} = \tan{( 4 \arctan{ ( \frac{1}{10} ) } )} &=& \frac{ 2\tan{(x)} }{ 1- \tan{(x)}\cdot \tan{(x)} } =\dfrac{2\cdot \frac{20}{99} } { 1- \frac{20}{99}\cdot \frac{20}{99} } = \frac{3960}{9401}\\ \qquad 4 \arctan{ ( \frac{1}{10} ) } &=& \arctan{ ( \frac{3960}{9401} ) } \end{array} }\)

 

 

III. We set:   \(x = 4\arctan{ ( \frac{1}{10} ) } = \arctan{ ( \frac{3960}{9401} ) }\quad \text{ and } \quad \tan{(x)} = \frac{3960}{9401} \)

\(\small{ \begin{array}{rcl} \tan{(2x)} = \tan{( 8 \arctan{ ( \frac{1}{10} ) } )} &=& \frac{ 2\tan{(x)} }{ 1- \tan{(x)}\cdot \tan{(x)} } =\dfrac{2\cdot \frac{3960}{9401} } { 1- \frac{3960}{9401}\cdot \frac{3960}{9401} } = \frac{74455920}{72697201}\\ \qquad 8 \arctan{ ( \frac{1}{10} ) } &=& \arctan{ ( \frac{74455920}{72697201} ) } \end{array} }\)

 

 

IV.

\(\text{Formula: } \quad \boxed{~ \tan{(x+y)} = \frac{ \tan{(x)}+\tan{(y)} }{ 1- \tan{(x)}\cdot \tan{(y)} } ~}\)

 

We set:   \(x = 8\arctan{ ( \frac{1}{10} ) } = \arctan{ ( \frac{74455920}{72697201} ) } \quad \text{ and } \quad \tan{(x)} = \frac{74455920}{72697201}\\ y = \arctan{ ( \frac{a}{b} ) } \quad \text{ and } \quad \tan{(y)} = \frac{a}{b}\\ \tan{(x+y)} = 1\)

 

\(\small{ \begin{array}{rcl} \tan{(x+y)} = \frac{ \tan{(x)}+\tan{(y)} }{ 1- \tan{(x)}\cdot \tan{(y)} } &=& \dfrac{ \frac{74455920}{72697201}+\frac{a}{b} }{ 1- \frac{74455920}{72697201}\cdot \frac{a}{b} } = 1\\\\ \qquad \dfrac{ \frac{74455920}{72697201}+\frac{a}{b} }{ 1- \frac{74455920}{72697201}\cdot \frac{a}{b} } &=& 1\\\\ \qquad \frac{74455920}{72697201}+\frac{a}{b} &=& 1- \frac{74455920}{72697201}\cdot \frac{a}{b}\\\\ \qquad \frac{a}{b}+ \frac{74455920}{72697201}\cdot \frac{a}{b} &=& 1-\frac{74455920}{72697201}\\\\ \qquad \frac{a}{b}\cdot \left( 1 + \frac{74455920}{72697201} \right) &=& 1-\frac{74455920}{72697201}\\\\ \qquad \frac{a}{b}\cdot \left( \frac{72697201+74455920}{72697201} \right) &=& \frac{72697201-74455920}{72697201}\\\\ \qquad \frac{a}{b}\cdot ( 72697201+74455920 ) &=& 72697201-74455920\\\\ \qquad \frac{a}{b} &=& \dfrac{ 72697201-74455920 } { 72697201+74455920 }\\\\ \qquad \frac{a}{b} &=& \dfrac{ -1758719 } { 147153121 }\\\\ \hline \\ \tan{(x+y)} = 1 \\ \tan{(8\arctan{ ( \frac{1}{10} ) }+\arctan{ ( \frac{a}{b} ) })} &=& 1 \\ \tan{(8\arctan{ ( \frac{1}{10} ) }-\arctan{ ( \frac{ 1758719 } { 147153121 } ) })} &=& 1 \\ 8\arctan{ ( \frac{1}{10} ) }-\arctan{ ( \frac{ 1758719 } { 147153121 } ) } &=& \arctan{(1)} \\\\ \mathbf{ 8\arctan{ ( \dfrac{1}{10} ) }-\arctan{ ( \dfrac{ 1758719 } { 147153121 } ) } } & \mathbf{=} & \mathbf{\dfrac{\pi} {4}} \end{array} }\)

 

laugh

heureka  Dec 2, 2015
 #3
avatar+91038 
+5

Thanks Heureka, that is a fabulous answer. :)

Melody  Dec 2, 2015
 #4
avatar
+10

Brilliant work, heureka!. Thank you very much for  the outstanding technical work and the final answer. I noticed that both "a" and "b" are primes! Wasn't expecting that at all. A brief question: couldn't this be solved by " continued fraction" method? That is: Pi/4= 8arctan(1/10) - arctan(1)=0.011951......etc. Then we take the tangent of this, which comes to=0.011951625545203353.......which is the answer of your two numbers: 1,758,719 / 147,153,121=0.011951625545203353........etc.

 

P.S. I plugged this into "WolframAlpha" and sure enough it gives this continued fraction:

[0; 83, 1, 2, 27, 1, 2, 1, 1, 1, 2, 3, 4, 6, 1, 6], When you work this backwards, it gives the fraction you found!:1758719/147153121=0.01195162554520335317930497716049121377452810.....

THANKS A LOT.

Guest Dec 2, 2015

3 Online Users

avatar
We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  See details