Pi/4=8arctan(1/10) - arctan(a/b). Find "a" and "b", so that the equality is true. Thank you very much for any help.
Pi/4=8arctan(1/10) - arctan(a/b). Find "a" and "b", so that the equality is true. Thank you very much for any help.
8⋅arctan(110)−arctan(ab)=π4
Formula: tan(2x)=2tan(x)1−tan(x)⋅tan(x)
I. We set: x=arctan(110) and tan(x)=110
tan(2x)=tan(2arctan(110))=2tan(x)1−tan(x)⋅tan(x)=2⋅1101−110⋅110=20992arctan(110)=arctan(2099)
II. We set: x=2arctan(110)=arctan(2099) and tan(x)=2099
tan(2x)=tan(4arctan(110))=2tan(x)1−tan(x)⋅tan(x)=2⋅20991−2099⋅2099=396094014arctan(110)=arctan(39609401)
III. We set: x=4arctan(110)=arctan(39609401) and tan(x)=39609401
tan(2x)=tan(8arctan(110))=2tan(x)1−tan(x)⋅tan(x)=2⋅396094011−39609401⋅39609401=74455920726972018arctan(110)=arctan(7445592072697201)
IV.
Formula: tan(x+y)=tan(x)+tan(y)1−tan(x)⋅tan(y)
We set: x=8arctan(110)=arctan(7445592072697201) and tan(x)=7445592072697201y=arctan(ab) and tan(y)=abtan(x+y)=1
tan(x+y)=tan(x)+tan(y)1−tan(x)⋅tan(y)=7445592072697201+ab1−7445592072697201⋅ab=17445592072697201+ab1−7445592072697201⋅ab=17445592072697201+ab=1−7445592072697201⋅abab+7445592072697201⋅ab=1−7445592072697201ab⋅(1+7445592072697201)=1−7445592072697201ab⋅(72697201+7445592072697201)=72697201−7445592072697201ab⋅(72697201+74455920)=72697201−74455920ab=72697201−7445592072697201+74455920ab=−1758719147153121tan(x+y)=1tan(8arctan(110)+arctan(ab))=1tan(8arctan(110)−arctan(1758719147153121))=18arctan(110)−arctan(1758719147153121)=arctan(1)8arctan(110)−arctan(1758719147153121)=π4
Pi/4=8arctan(1/10) - arctan(a/b). Find "a" and "b", so that the equality is true. Thank you very much for any help.
8⋅arctan(110)−arctan(ab)=π4
Formula: tan(2x)=2tan(x)1−tan(x)⋅tan(x)
I. We set: x=arctan(110) and tan(x)=110
tan(2x)=tan(2arctan(110))=2tan(x)1−tan(x)⋅tan(x)=2⋅1101−110⋅110=20992arctan(110)=arctan(2099)
II. We set: x=2arctan(110)=arctan(2099) and tan(x)=2099
tan(2x)=tan(4arctan(110))=2tan(x)1−tan(x)⋅tan(x)=2⋅20991−2099⋅2099=396094014arctan(110)=arctan(39609401)
III. We set: x=4arctan(110)=arctan(39609401) and tan(x)=39609401
tan(2x)=tan(8arctan(110))=2tan(x)1−tan(x)⋅tan(x)=2⋅396094011−39609401⋅39609401=74455920726972018arctan(110)=arctan(7445592072697201)
IV.
Formula: tan(x+y)=tan(x)+tan(y)1−tan(x)⋅tan(y)
We set: x=8arctan(110)=arctan(7445592072697201) and tan(x)=7445592072697201y=arctan(ab) and tan(y)=abtan(x+y)=1
tan(x+y)=tan(x)+tan(y)1−tan(x)⋅tan(y)=7445592072697201+ab1−7445592072697201⋅ab=17445592072697201+ab1−7445592072697201⋅ab=17445592072697201+ab=1−7445592072697201⋅abab+7445592072697201⋅ab=1−7445592072697201ab⋅(1+7445592072697201)=1−7445592072697201ab⋅(72697201+7445592072697201)=72697201−7445592072697201ab⋅(72697201+74455920)=72697201−74455920ab=72697201−7445592072697201+74455920ab=−1758719147153121tan(x+y)=1tan(8arctan(110)+arctan(ab))=1tan(8arctan(110)−arctan(1758719147153121))=18arctan(110)−arctan(1758719147153121)=arctan(1)8arctan(110)−arctan(1758719147153121)=π4
Brilliant work, heureka!. Thank you very much for the outstanding technical work and the final answer. I noticed that both "a" and "b" are primes! Wasn't expecting that at all. A brief question: couldn't this be solved by " continued fraction" method? That is: Pi/4= 8arctan(1/10) - arctan(1)=0.011951......etc. Then we take the tangent of this, which comes to=0.011951625545203353.......which is the answer of your two numbers: 1,758,719 / 147,153,121=0.011951625545203353........etc.
P.S. I plugged this into "WolframAlpha" and sure enough it gives this continued fraction:
[0; 83, 1, 2, 27, 1, 2, 1, 1, 1, 2, 3, 4, 6, 1, 6], When you work this backwards, it gives the fraction you found!:1758719/147153121=0.01195162554520335317930497716049121377452810.....
THANKS A LOT.