+0

# Find the maximum value of \$y/x\$ over all real numbers \$x\$ and \$y\$ that satisfy \[(x - 3)^2 + (y - 3)^2 = 6.\]

0
50
2
+417

Find the maximum value of \$y/x\$ over all real numbers \$x\$ and \$y\$ that satisfy \[(x - 3)^2 + (y - 3)^2 = 6.\]

michaelcai  Oct 30, 2017
Sort:

#1
+78756
+2

(x - 3)^2 + (y - 3)^2 = 6

This is a circle with a center of  (3, 3)    and a radius  = √ 6

I don't know how to prove this but WolframAlpha gives the answer as

{ x , y }  =  ( 2 - √ 2 , 2 + √ 2 )

And   y / x   ≈   [ 2 + √ 2 ]  / [ 2  - √ 2 ]  ≈  5.828

CPhill  Oct 31, 2017
#2
+78756
+2

Here's the   Calculus solution for this one...it's a little difficult  !!!

(x - 3)^2 + (y - 3)^2 = 6

(y - 3)^2  =  6 -  [ x^2 - 6x + 9]

( y - 3)^2  =  6x- x^2 - 3

y - 3  = √ [ 6x- x^2 - 3]

y = √ [ 6x- x^2 - 3]  + 3

So......call y/x  =  z  ....so we have

z =  y/x  =   [ √ [ 6x- x^2 - 3]  + 3]  / x

The derivative  of this is messy, but we have

z'  =   - 3 ( x  + √ [ 6x- x^2 - 3] - 1 )  /   [ x^2 * √ [ 6x- x^2 - 3] ]

We  can find a solution that minimizes  x   by  solving   this :

( x  + √ [ 6x- x^2 - 3] - 1 )  =  0

x - 1  =   -√ [ 6x- x^2 - 3]        square both sides

x^2 - 2x + 1  =  6x- x^2 - 3

2x^2 - 8x + 4  =  0

x^2 - 4x + 2  = 0

The solution that minimizes x  is      2 - √ 2

And using    (x - 3)^2 + (y - 3)^2 = 6

When  x =  2 - √ 2     we have

( 2 - √ 2 - 3 )^2 +  (y - 3)^2 = 6

( 1 + √ 2)^2 +  (y - 3)^2 = 6

1 + 2 + 2√ 2 + (y - 3)^2 = 6

(y - 3)^2 = 3 -  2√ 2

y =  √ [ 3 -  2√ 2] + 3    ⇒ √  [ ( 1 -√2  ) ^2 ]  + 3   or √  [ ( √2 - 1 ) ^2 ]  + 3  ⇒

y =  4 - √ 2     or   y =   2 + √ 2

And

[  2 + √ 2 ] / [  2 - √ 2 ]   maximizes  y / x

CPhill  Nov 1, 2017

### 14 Online Users

We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  See details