Processing math: 100%
 
+0  
 
0
7073
3
avatar

Find the smallest positive integer that satisfies the system of congruences

a)

n congruency sign 2 (mod ll)
n congruency sign 3 (mod 17)

b)

n congruency sign 1 (mod 7)

n congruency sign 7 (mod 13)

n congruency sign 13 (mod 20)

 May 13, 2016

Best Answer 

 #2
avatar+118703 
+11

b)

n congruency sign 1 (mod 7)                   n=7p+1

n congruency sign 7 (mod 13)                 n=13q+7

n congruency sign 13 (mod 20)               n=20r+13

13,33,53,73,93,113,133,153,173,193,...............293

which is a multiple of 7

12,32,52,72,92, 112, ....... ...................................292

which is a multiple of 13

6,26,46,66,86,106,126,146,166,186,206,226, 246,266,286,

33+13*20n = 33+260n   will    satisfy    13(mod20) and  7(mod 13)

33,293,553,813,1073

 

33+260n   which of these will be 1 mod 7

 

 

32+260m must be a multiple of 7

32+260m must be a multple of 7

260m+32=7k

292, 552, 812,

812+1=813

 

 

813 = 1(mod 7)

813 =  13(mod 20)

813 =  7(mod 13)

 

The smallest number that meets those criterion is  813

 

There is probably a much better way to do it though ://

 May 13, 2016
 #1
avatar+118703 
+11

Find the smallest positive integer that satisfies the system of congruences

a)

n congruency sign 2 (mod ll)      n= 11p+2

n= 2,13,24,35,46,57,68,79,90,101,112,123,134,145,156,
n congruency sign 3 (mod 17)    n=17q+3

n=3,20,37,54,71,88,105,122,139,156,173,190

 May 13, 2016
 #2
avatar+118703 
+11
Best Answer

b)

n congruency sign 1 (mod 7)                   n=7p+1

n congruency sign 7 (mod 13)                 n=13q+7

n congruency sign 13 (mod 20)               n=20r+13

13,33,53,73,93,113,133,153,173,193,...............293

which is a multiple of 7

12,32,52,72,92, 112, ....... ...................................292

which is a multiple of 13

6,26,46,66,86,106,126,146,166,186,206,226, 246,266,286,

33+13*20n = 33+260n   will    satisfy    13(mod20) and  7(mod 13)

33,293,553,813,1073

 

33+260n   which of these will be 1 mod 7

 

 

32+260m must be a multiple of 7

32+260m must be a multple of 7

260m+32=7k

292, 552, 812,

812+1=813

 

 

813 = 1(mod 7)

813 =  13(mod 20)

813 =  7(mod 13)

 

The smallest number that meets those criterion is  813

 

There is probably a much better way to do it though ://

Melody May 13, 2016
 #3
avatar+26396 
+11

Find the smallest positive integer that satisfies the system of congruences

 

a)

n congruency sign 2 (mod ll)

n congruency sign 3 (mod 17)

 

n2(mod11)n3(mod17)Let m=1117=187

Because 11 and 17 are relatively prim ( gcd(11,17) = 1! ) we can go on:

 

n=217[17φ(11)1(mod11)]=modulo inverse 17 mod 11=17101mod11=179mod11=2+311[11φ(17)1(mod17)]=modulo inverse 11 mod 17=11161mod17=1115mod17=14n=217[2]+311[14]n=68+462n=530n(modm)=530(mod187)=156n=156+k187kZnmin=156

 

b)

n congruency sign 1 (mod 7)

n congruency sign 7 (mod 13)

n congruency sign 13 (mod 20)

 

n1(mod7)n7(mod13)n13(mod20)Let m=71320=1820

 

Because 7 and 13 and 20 are relatively prim  we can go on:

 

n=11320[(1320)φ(7)1(mod7)]=modulo inverse (1320)mod7=(1320)61mod7=(1320)5mod7=(260(mod7))5mod7=(1)5mod7=1+7720[(720)φ(13)1(mod13)]=modulo inverse (720)mod13=(720)121mod13=(720)11mod13=(140(mod13))11mod13=(10)11mod13=4+13713[(713)φ(20)1(mod20)]=modulo inverse (713)mod20=(713)81mod20=(713)7mod20=(91(mod20))7mod20=(11)7mod20=11n=11320[1]+7720[4]+13713[11]n=260+3920+13013n=17193n(modm)=17193(mod1820)=813n=813+k1820kZnmin=813

 

In number theory, Euler's theorem (also known as the Fermat–Euler theorem or Euler's totient theorem)states that if n and a are coprime positive integers, then aφ(n)1(modn)

 

 

laugh

 May 13, 2016
edited by heureka  May 13, 2016
edited by heureka  May 13, 2016

1 Online Users

avatar