+0  
 
0
49
2
avatar+33 

Simplify f(x+h)-f(x)/ h

where (f)x=2x+ x

Thank you 

Ashreeta  Aug 28, 2017
Sort: 

2+0 Answers

 #1
avatar+18564 
+2

Simplify f(x+h)-f(x)/ h

where (f)x=2x2 + x

 

\(\begin{array}{rcll} f(x) &=& 2x^2+x\\ f(x+h)&=&2(x+h)^2+(x+h)\\\\ \text{The difference quotient is:}\\ \dfrac{\Delta y}{\Delta x} &=& \dfrac{f(x+h)-f(x)}{h}\\ &=& \dfrac{2(x+h)^2+(x+h)-(2x^2+x)}{h}\\ &=& \dfrac{2(x+h)^2+ x +h-2x^2 - x }{h}\\ &=& \dfrac{2(x+h)^2 +h-2x^2 }{h}\\ &=& \dfrac{2(x^2+2xh+h^2) +h-2x^2 }{h}\\ &=& \dfrac{2x^2+4xh+2h^2 +h-2x^2 }{h}\\ &=& \dfrac{ 4xh+2h^2 +h }{h}\\ &=& \dfrac{ h( 4x+2h +1) }{h}\\ \dfrac{\Delta y}{\Delta x} &=& 4x+2h +1 \end{array} \)

 

 

\(\begin{array}{rcll} f'(x) &=& \dfrac{dy}{dx} \\ \dfrac{dy}{dx} &=& \lim \limits_{h\to 0} { \left( 4x+2h +1 \right) } \\ \dfrac{dy}{dx} &=& \left( 4x+2\cdot 0 +1 \right) \\ \dfrac{dy}{dx} &=& \left( 4x+1 \right) \\\\ \mathbf{f'(x)} &\mathbf{=}& \mathbf{4x+1} \end{array}\)

 

laugh

heureka  Aug 28, 2017
 #2
avatar+33 
+2

Thank you 

Ashreeta  Aug 28, 2017

10 Online Users

avatar
We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  See details