+0

# Function notation

0
133
2
+62

Simplify f(x+h)-f(x)/ h

where (f)x=2x+ x

Thank you

Ashreeta  Aug 28, 2017
Sort:

#1
+18827
+2

Simplify f(x+h)-f(x)/ h

where (f)x=2x2 + x

$$\begin{array}{rcll} f(x) &=& 2x^2+x\\ f(x+h)&=&2(x+h)^2+(x+h)\\\\ \text{The difference quotient is:}\\ \dfrac{\Delta y}{\Delta x} &=& \dfrac{f(x+h)-f(x)}{h}\\ &=& \dfrac{2(x+h)^2+(x+h)-(2x^2+x)}{h}\\ &=& \dfrac{2(x+h)^2+ x +h-2x^2 - x }{h}\\ &=& \dfrac{2(x+h)^2 +h-2x^2 }{h}\\ &=& \dfrac{2(x^2+2xh+h^2) +h-2x^2 }{h}\\ &=& \dfrac{2x^2+4xh+2h^2 +h-2x^2 }{h}\\ &=& \dfrac{ 4xh+2h^2 +h }{h}\\ &=& \dfrac{ h( 4x+2h +1) }{h}\\ \dfrac{\Delta y}{\Delta x} &=& 4x+2h +1 \end{array}$$

$$\begin{array}{rcll} f'(x) &=& \dfrac{dy}{dx} \\ \dfrac{dy}{dx} &=& \lim \limits_{h\to 0} { \left( 4x+2h +1 \right) } \\ \dfrac{dy}{dx} &=& \left( 4x+2\cdot 0 +1 \right) \\ \dfrac{dy}{dx} &=& \left( 4x+1 \right) \\\\ \mathbf{f'(x)} &\mathbf{=}& \mathbf{4x+1} \end{array}$$

heureka  Aug 28, 2017
#2
+62
+2

Thank you

Ashreeta  Aug 28, 2017

### 19 Online Users

We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  See details