+0  
 
0
176
3
avatar

A portion of the graph of $f(x)=ax^2+bx+c$ is shown below. The distance between grid lines on the graph is $1$ unit. What is the value of $a+b+2c$? [asy] size(150); real ticklen=3; real tickspace=2; real ticklength=0.1cm; real axisarrowsize=0.14cm; pen axispen=black+1.3bp; real vectorarrowsize=0.2cm; real tickdown=-0.5; real tickdownlength=-0.15inch; real tickdownbase=0.3; real wholetickdown=tickdown; void rr_cartesian_axes(real xleft, real xright, real ybottom, real ytop, real xstep=1, real ystep=1, bool useticks=false, bool complexplane=false, bool usegrid=true) { import graph; real i; if(complexplane) { label("$\textnormal{Re}$",(xright,0),SE); label("$\textnormal{Im}$",(0,ytop),NW); } else { label("$x$",(xright+0.4,-0.5)); label("$y$",(-0.5,ytop+0.2)); } ylimits(ybottom,ytop); xlimits( xleft, xright); real[] TicksArrx,TicksArry; for(i=xleft+xstep; i<xright; i+=xstep) { if(abs(i) >0.1) { TicksArrx.push(i); } } for(i=ybottom+ystep; i<ytop; i+=ystep) { if(abs(i) >0.1) { TicksArry.push(i); } } if(usegrid) { xaxis(BottomTop(extend=false), Ticks("%", TicksArrx ,pTick=gray(0.22),extend=true),p=invisible);//,above=true); yaxis(LeftRight(extend=false),Ticks("%", TicksArry ,pTick=gray(0.22),extend=true), p=invisible);//,Arrows); } if(useticks) { xequals(0, ymin=ybottom, ymax=ytop, p=axispen, Ticks("%",TicksArry , pTick=black+0.8bp,Size=ticklength), above=true, Arrows(size=axisarrowsize)); yequals(0, xmin=xleft, xmax=xright, p=axispen, Ticks("%",TicksArrx , pTick=black+0.8bp,Size=ticklength), above=true, Arrows(size=axisarrowsize)); } else { xequals(0, ymin=ybottom, ymax=ytop, p=axispen, above=true, Arrows(size=axisarrowsize)); yequals(0, xmin=xleft, xmax=xright, p=axispen, above=true, Arrows(size=axisarrowsize)); } }; rr_cartesian_axes(-4,3,-2,9); real f(real x) {return 8-(x+1)^2;} draw(graph(f,-3.9,2.16,operator ..), red); [/asy]

Guest Nov 25, 2014

Best Answer 

 #1
avatar+80933 
+10

"c" is easy.... it's = 7

The vertex is at (h, k) = (-1, 8)   and the point    (2. -1) is on the graph

So we have

y = a(x - h)^2 + k

-1 =a(2- (-1))^2 + 8

-1 = a(3)^2 + 8      subtract 8 from both sides

-9 = a(9)     divide both sides by 9

-1 = a  

And the x coordinate of the vertex is given by  -b/2a

So we have 

-1 = -b/2(-1)  →  -1 = -b/-2 →  b = - 2

So.....our function is

y = -1x^2 - 2x + 7

So

a + b + 2c =

-1 + (-2) + 2(7) =

11

 

 

CPhill  Nov 25, 2014
Sort: 

3+0 Answers

 #1
avatar+80933 
+10
Best Answer

"c" is easy.... it's = 7

The vertex is at (h, k) = (-1, 8)   and the point    (2. -1) is on the graph

So we have

y = a(x - h)^2 + k

-1 =a(2- (-1))^2 + 8

-1 = a(3)^2 + 8      subtract 8 from both sides

-9 = a(9)     divide both sides by 9

-1 = a  

And the x coordinate of the vertex is given by  -b/2a

So we have 

-1 = -b/2(-1)  →  -1 = -b/-2 →  b = - 2

So.....our function is

y = -1x^2 - 2x + 7

So

a + b + 2c =

-1 + (-2) + 2(7) =

11

 

 

CPhill  Nov 25, 2014
 #2
avatar+80933 
0

Thanks for those points,  Melody....!!!!

 

CPhill  Nov 25, 2014
 #3
avatar+91436 
+5

This is a really good one for high school students to look at.  (Maybe years 9 to 11)

Chris has given you a nice solution. Thanks Chris.

Melody  Nov 25, 2014

9 Online Users

We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  See details