+0

0
90
1

Find all solutions to the equation $\sqrt{3x+6}=x+2$. If there are multiple solutions, order them from least to greatest, separated by comma(s).

Guest Aug 17, 2017

#1
+18715
+1

Find all solutions to the equation \sqrt{3x+6}=x+2 ($$\sqrt{3x+6}=x+2$$).
If there are multiple solutions,
order them from least to greatest, separated by comma(s).

$$\begin{array}{|rcll|} \hline \sqrt{3x+6} &=& x+2 \quad & | \quad \text{square both sides} \\ 3x+6 &=& (x+2)^2 \\ 3x+6 &=& x^2+4x+4 \\ x^2 +x -2 &=& 0 \\ (x+2)(x-1) &=& 0 \\\\ x_1 &=& -2 \\ x_2 &=& 1 \\ \hline \end{array}$$

Solution Set: {-2,1}

Proof:
$$x=-2:\qquad \sqrt{3\cdot(-2)+6} = -2+2\quad \checkmark \\ x=1: \qquad \sqrt{3\cdot(1)+6} = 1+2 \quad \checkmark$$

heureka  Aug 17, 2017
Sort:

#1
+18715
+1

Find all solutions to the equation \sqrt{3x+6}=x+2 ($$\sqrt{3x+6}=x+2$$).
If there are multiple solutions,
order them from least to greatest, separated by comma(s).

$$\begin{array}{|rcll|} \hline \sqrt{3x+6} &=& x+2 \quad & | \quad \text{square both sides} \\ 3x+6 &=& (x+2)^2 \\ 3x+6 &=& x^2+4x+4 \\ x^2 +x -2 &=& 0 \\ (x+2)(x-1) &=& 0 \\\\ x_1 &=& -2 \\ x_2 &=& 1 \\ \hline \end{array}$$

Solution Set: {-2,1}

Proof:
$$x=-2:\qquad \sqrt{3\cdot(-2)+6} = -2+2\quad \checkmark \\ x=1: \qquad \sqrt{3\cdot(1)+6} = 1+2 \quad \checkmark$$

heureka  Aug 17, 2017

### 4 Online Users

We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  See details