+0

# Help with a trig sub

0
424
5
+576

I'm trying to take an integral bounded below by zero and above by alpha of the sqrt(1-x^2)

I think It is a trig sub but the answer I keep getting is ridiculous.  Any suggestions are appreciated.

jboy314  Jun 24, 2014

#5
+18827
+10

I'm trying to take an integral bounded below by zero and above by alpha of the sqrt(1-x^2) :

$$\boxed{\int\limits_{x=0}^{x=\alpha } \sqrt{1-x^2}\ dx \quad ?}$$

Substitute x only:   x = sin(z)   and    dx = cos(z) dz

$$\int\limits_{x=0}^{x=\alpha } \underbrace{\sqrt{1-\sin^2{(z)}}}_{\cos{(z)}} \overbrace{\cos{(z)} \ dz }^{\ dx}=\int\limits_{x=0}^{x=\alpha }\cos^2{(z)} \ dz$$

Product rule (uv)' = u'v+uv'

u =sin(z)     v =cos(z)

u'=cos(z)     v'=-sin(z)

$$\textstyle{\left {(} \sin{(z)}\cos{(z)} \right{)'}=\cos{(z)}*\cos{(z)}+\sin{(z)}(-\sin{(z)})=\cos^2{(z)}-\sin^2{(z)}}$$

$$\boxed{\sin^2{(z)}=1-\cos^2{(z)} }$$

$$\textstyle{\left {(} \sin{(z)}\cos{(z)} \right{)'} =cos^2{(z)}-(1-cos^2{(z)}}) =-1+2\cos^2{(z)}$$

$$2\cos^2{(z)}=1+ \left {(} \sin{(z)}\cos{(z)} \right{)'} \quad | \quad \int$$

$$2\int{\cos^2{(z)}}\ dz = \underbrace{\int{\ dz }}_z + \sin{(z)}\cos{(z)}$$

$$\boxed{\int{\cos^2{(z)}}\ dz =\dfrac{1}{2} \left( z+\sin{(z)}\cos{(z)} \right)}$$

Back substitute:

$$\\z=\sin^{-1}{(x)}\\ \sin{(z)}=x\\ \cos{(z)}=\sqrt{1-x^2}$$

$$\begin{array}{rcl} \int\limits_{x=0}^{x=\alpha } \sqrt{1-x^2}\ dx &=& \left[ \dfrac{1}{2} \left( \sin^{-1}{(x)}+x\sqrt{1-x^2} \right) } \right]^{x=\alpha}_{x=0}\\\\ &=&\frac{1}{2} \left(\; \sin^{-1}{(\alpha)}+\alpha\sqrt{1-\alpha^2} \;\right) \end{array}$$

heureka  Jun 25, 2014
Sort:

#1
+91412
+5

I don't know but I found this on the web.

http://math.stackexchange.com/questions/533082/integral-of-sqrt1-x2-using-integration-by-parts

Melody  Jun 24, 2014
#2
+576
0

That's pretty nifty. Thanks!

jboy314  Jun 24, 2014
#3
+26397
+10

Here's the trig substitution approach:

Alan  Jun 24, 2014
#4
+576
0

Looks like i totally blew the first step in my own work by not using a substitution for dx!  wow!  Thanks!

jboy314  Jun 24, 2014
#5
+18827
+10

I'm trying to take an integral bounded below by zero and above by alpha of the sqrt(1-x^2) :

$$\boxed{\int\limits_{x=0}^{x=\alpha } \sqrt{1-x^2}\ dx \quad ?}$$

Substitute x only:   x = sin(z)   and    dx = cos(z) dz

$$\int\limits_{x=0}^{x=\alpha } \underbrace{\sqrt{1-\sin^2{(z)}}}_{\cos{(z)}} \overbrace{\cos{(z)} \ dz }^{\ dx}=\int\limits_{x=0}^{x=\alpha }\cos^2{(z)} \ dz$$

Product rule (uv)' = u'v+uv'

u =sin(z)     v =cos(z)

u'=cos(z)     v'=-sin(z)

$$\textstyle{\left {(} \sin{(z)}\cos{(z)} \right{)'}=\cos{(z)}*\cos{(z)}+\sin{(z)}(-\sin{(z)})=\cos^2{(z)}-\sin^2{(z)}}$$

$$\boxed{\sin^2{(z)}=1-\cos^2{(z)} }$$

$$\textstyle{\left {(} \sin{(z)}\cos{(z)} \right{)'} =cos^2{(z)}-(1-cos^2{(z)}}) =-1+2\cos^2{(z)}$$

$$2\cos^2{(z)}=1+ \left {(} \sin{(z)}\cos{(z)} \right{)'} \quad | \quad \int$$

$$2\int{\cos^2{(z)}}\ dz = \underbrace{\int{\ dz }}_z + \sin{(z)}\cos{(z)}$$

$$\boxed{\int{\cos^2{(z)}}\ dz =\dfrac{1}{2} \left( z+\sin{(z)}\cos{(z)} \right)}$$

Back substitute:

$$\\z=\sin^{-1}{(x)}\\ \sin{(z)}=x\\ \cos{(z)}=\sqrt{1-x^2}$$

$$\begin{array}{rcl} \int\limits_{x=0}^{x=\alpha } \sqrt{1-x^2}\ dx &=& \left[ \dfrac{1}{2} \left( \sin^{-1}{(x)}+x\sqrt{1-x^2} \right) } \right]^{x=\alpha}_{x=0}\\\\ &=&\frac{1}{2} \left(\; \sin^{-1}{(\alpha)}+\alpha\sqrt{1-\alpha^2} \;\right) \end{array}$$

heureka  Jun 25, 2014

### 21 Online Users

We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  See details