Loading [MathJax]/jax/output/SVG/jax.js
 
+0  
 
0
2
2278
2
avatar

In general, the highest price p per unit of an item at which a manufacturer can sell N items is not constant but is, rather, a function of N. Suppose the manufacturer of widgets has developed the following table showing the highest price p, in dollars, of a widget at which N widgets can be sold.

 

(a) Find a formula for p in terms of N modeling the data in the table.

p=

 

Number N          Price p

250                     32.50

300                     32.00

350                     31.50

400                     31.00

 

(b) Use a formula to express the total monthly revenue R, in dollars, of this manufacturer in a month as a function of the number N of widgets produced in a month.

 

R =  

 

 

(c) On the basis of the tables in this exercise and using cost, C = 30N + 700, use a formula to express the monthly profit P, in dollars, of this manufacturer as a function of the number of widgets produced in a month.

 

p=

 Oct 27, 2015

Best Answer 

 #1
avatar+6251 
+10

I'm going to assume it's linear and then check.(p32.50)=m(N250)m=3132.5400250=1.5150=1100so (p32.50)=1100(N250)p=N100+35

 

Checking the two inside points.32=3+35True31.50=3.5+35Trueso all the points check out and the formula is correct.

 

(b) R(N)=Np(N)=N(35N100)

 

(c) Profit(N)=R(N)C(N)=N(35N100)(30N+700)

 

Profit(N)=5NN2100700

 Oct 28, 2015
edited by Rom  Oct 28, 2015
 #1
avatar+6251 
+10
Best Answer

I'm going to assume it's linear and then check.(p32.50)=m(N250)m=3132.5400250=1.5150=1100so (p32.50)=1100(N250)p=N100+35

 

Checking the two inside points.32=3+35True31.50=3.5+35Trueso all the points check out and the formula is correct.

 

(b) R(N)=Np(N)=N(35N100)

 

(c) Profit(N)=R(N)C(N)=N(35N100)(30N+700)

 

Profit(N)=5NN2100700

Rom Oct 28, 2015
edited by Rom  Oct 28, 2015
 #2
avatar+130466 
0

...........

 Oct 28, 2015
edited by CPhill  Oct 28, 2015

1 Online Users