+0

# Help. ​

0
27
1
+1146

Help.

NotSoSmart  Dec 7, 2017
Sort:

#1
+79741
+1

We have

1d^6   -  6d^5*(5y)  + 15d^4*(5y)^2  -  20d^3*(5y)^3 + 15d^2(5y)^4 - 6d*(5y)^5 + 1(5y)^6

d^6  - 30d^5y + 375d^4y^2 - 2500d^3y^3 + 9375d^2y^3 -  18750dy^5 + 15625y^6

x^4  -  6x^2  - 7x  - 6 = 0

Using the Rational roots Theorem, 3 is a root....

Using synthetic division  to find the remaining polynomial, we have

3  [  1   0     -6      - 7     - 6  ]

3      9        9        6

__________________

1   3    3         2        0

So  we have

x^3  +  3x^2  +  3x   +  2       and we can write

x^3  +  3x^2  +  2x   + x + 2     factor

x ( x^2 + 3x + 2)  +  1 (x + 2)

x (x + 2)(x + 1) +  1 ( x + 2)

(x + 2)  [ x(x + 1) + 1 ]

(x + 2) [ x^2 + x + 1]

So -2 is the other real root

And  using the quadratic formula....the roots of the other polynomial are

[-1 ± i√3] / 2

CPhill  Dec 7, 2017

### 22 Online Users

We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  See details