i want to fint the lim of this Lim-->4 (x*sqrt(x)-8)/(x-4) i know its 3 https://graphsketch.com/ but how can prove it?
Find the following limit:
lim_(x->4) (x sqrt(x)-8)/(x-4)
(x sqrt(x)-8)/(x-4) = (x^(3/2)-8)/(x-4):
lim_(x->4) (x^(3/2)-8)/(x-4)
Factor the numerator and denominator:
lim_(x->4) ((sqrt(x)-2) (4+2 sqrt(x)+x))/((sqrt(x)-2) (2+sqrt(x)))
Cancel terms, assuming sqrt(x)-2!=0:
lim_(x->4) (4+2 sqrt(x)+x)/(2+sqrt(x))
lim_(x->4) (4+2 sqrt(x)+x)/(2+sqrt(x)) = (4+2 sqrt(4)+4)/(2+sqrt(4)) = 3:
Answer: | =3
Find the following limit:
lim_(x->4) (x sqrt(x)-8)/(x-4)
(x sqrt(x)-8)/(x-4) = (x^(3/2)-8)/(x-4):
lim_(x->4) (x^(3/2)-8)/(x-4)
Factor the numerator and denominator:
lim_(x->4) ((sqrt(x)-2) (4+2 sqrt(x)+x))/((sqrt(x)-2) (2+sqrt(x)))
Cancel terms, assuming sqrt(x)-2!=0:
lim_(x->4) (4+2 sqrt(x)+x)/(2+sqrt(x))
lim_(x->4) (4+2 sqrt(x)+x)/(2+sqrt(x)) = (4+2 sqrt(4)+4)/(2+sqrt(4)) = 3:
Answer: | =3
Lim-->4 (x*sqrt(x)-8)/(x-4)
limx→4(x∗√x−8)(x−4)=limx→4(x∗√x−8)(x−4)
At this point I have learned from our guest. Thankyou :)
=limx→4(x√x−8)(√x−2)(√x+2) I need to get rid of the √x−2in the denominatorNow I used algebraic division to find that(x√x−8)÷(√x−2)=x+2√x+4so(x√x−8)=(x+2√x+4)(√x−2) =limx→4(x+2√x+4)(√x−2)(√x−2)(√x+2) =limx→4(x+2√x+4)(√x+2) =4+2∗2+42+2=3
Here it the graph - it has a hole in it at (4,3)